【題目】2018年2月25日第23屆冬季奧動(dòng)會(huì)在韓國(guó)平昌閉幕,中國(guó)以銅的成績(jī)結(jié)束本次冬奧會(huì)的征程,某校體育愛(ài)好者協(xié)會(huì)對(duì)某班進(jìn)行了“本屆冬奧會(huì)中國(guó)隊(duì)表現(xiàn)”的滿(mǎn)意度調(diào)查(結(jié)果只有“滿(mǎn)意”和“不滿(mǎn)意”兩種),按分層抽樣從該班學(xué)生中隨機(jī)抽取了人,具體的調(diào)查結(jié)果如下表:

某班

滿(mǎn)意

不滿(mǎn)意

男生

女生

(1)若該班女生人數(shù)比男生人數(shù)多人,求該班男生人數(shù)和女生人數(shù);

(2)若從該班調(diào)查對(duì)象的女生中隨機(jī)選取人進(jìn)行追蹤調(diào)查,記選中的人中“滿(mǎn)意”的人數(shù)為,求時(shí)對(duì)應(yīng)事件的概率.

【答案】(1),;(2).

【解析】分析:(1)根據(jù)分層抽樣的比例關(guān)系列方程組得出男女人數(shù);

(2) 時(shí)對(duì)應(yīng)的事件是從名女生中選取人進(jìn)行追蹤調(diào)查,恰有一人持滿(mǎn)意態(tài)度,

設(shè)該事件為.不妨用,,表示持滿(mǎn)意態(tài)度的女生,用來(lái)表示持不滿(mǎn)意態(tài)度的女生,利用列舉法能求出時(shí)對(duì)應(yīng)事件的概率.

詳解:(1)設(shè)該班女生人數(shù) ,男生人數(shù)為,

又由分層抽樣可知:

聯(lián)立①、②得,

(2) 時(shí)對(duì)應(yīng)的事件是從名女生中選取人進(jìn)行追蹤調(diào)查,恰有一人持滿(mǎn)意態(tài)度,

設(shè)該事件為.

不妨用,,表示持滿(mǎn)意態(tài)度的女生,用來(lái)表示持不滿(mǎn)意態(tài)度的女生,

中包含的基本事件可表示為,,,,,共有

基本事件的總數(shù)可表示為,,,,,,,,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點(diǎn)M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三條直線型公路,在點(diǎn)處交匯,其中、的夾角都為,在公路上取一點(diǎn),且km,過(guò)鋪設(shè)一直線型的管道,其中點(diǎn)上,點(diǎn)上(,足夠長(zhǎng)),設(shè)kmkm

1)求出,的關(guān)系式;

2)試確定,的位置,使得公路段與段的長(zhǎng)度之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有人用三段論進(jìn)行推理:“函數(shù) 的導(dǎo)函數(shù) 的零點(diǎn)即為函數(shù)的極值點(diǎn),函數(shù) 的導(dǎo)函數(shù)的零點(diǎn)為 ,所以 是函數(shù) 的極值點(diǎn) ”,上面的推理錯(cuò)誤的是( )

A. 大前提 B. 小前提 C. 推理形式 D. 以上都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3ax2bxc,x∈[-2,2]表示過(guò)原點(diǎn)的曲線,且在x=±1處的切線的傾斜角均為π,有以下命題:

f(x)的解析式為f(x)=x3-4xx∈[-2,2].

f(x)的極值點(diǎn)有且只有一個(gè).

f(x)的最大值與最小值之和等于零.

其中正確命題的序號(hào)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,點(diǎn)E,F(xiàn)分別是棱D1C1 , B1C1的中點(diǎn),過(guò)E,F(xiàn)作一平面α,使得平面α∥平面AB1D1 , 則平面α截正方體的表面所得平面圖形為(
A.三角形
B.四邊形
C.五邊形
D.六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專(zhuān)著,成于公元一世紀(jì)左右,系統(tǒng)總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就.其中《方田》一章中記載了計(jì)算弧田(弧田就是由圓弧和其所對(duì)弦所圍成弓形)的面積所用的經(jīng)驗(yàn)公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)為的弧田.其實(shí)際面積與按照上述經(jīng)驗(yàn)公式計(jì)算出弧田的面積之間的誤差為( )平方米.(其中,

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 的離心率為 ,頂點(diǎn)為A1、A2、B1、B2 , 且

(1)求橢圓C的方程;
(2)P是橢圓C上除頂點(diǎn)外的任意點(diǎn),直線B2P交x軸于點(diǎn)Q,直線A1B2交A2P于點(diǎn)E.設(shè)A2P的斜率為k,EQ的斜率為m,試問(wèn)2m﹣k是否為定值?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長(zhǎng)為2的等邊三角形,PC= ,M在PC上,且PA∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案