(本小題滿(mǎn)分13分)如圖,在三棱柱ABC—A1B1C1中,側(cè)面BB1C1C,已知AB=BC=1,BB1=2,,E為CC1的中點(diǎn)。
(1)求證:平面ABC;
(2)求二面角A—B1E—B的大小。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)四棱錐的底面是正方形,,點(diǎn)E在棱PB上.若AB=,
(Ⅰ)求證:平面;
(Ⅱ)若E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的直徑,點(diǎn)在圓上,,交于點(diǎn),平面,,.
(Ⅰ)證明:;
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,、為圓柱的母線,是底面圓的直徑,、分別是、的中點(diǎn),.
(1)證明:;
(2)求四棱錐與圓柱的體積比;
(3)若,求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=.
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)設(shè)PM="t" MC,若二面角M-BQ-C的平面角的大小為30°,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分16分)
如圖,多面體中,兩兩垂直,平面平面,
平面平面,.
(1)證明四邊形是正方形;
(2)判斷點(diǎn)是否四點(diǎn)共面,并說(shuō)明為什么?
(3)連結(jié),求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
正△的邊長(zhǎng)為4,是邊上的高,分別是和邊的中點(diǎn),現(xiàn)將△沿翻折成直二面角.
(1)試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;
(2)求平面BDC與平面DEF的夾角的余弦值;
(3)在線段上是否存在一點(diǎn),使?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,點(diǎn)P,Q,R分別是棱AB,CC1,D1A1的中點(diǎn).
(1)求證:B1D^平面PQR;
(2)設(shè)二面角B1-PR-Q的大小為q,求|cosq|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖所示,在正方體ABCD-A1B1C1D1
中,O是底面正方形ABCD的中心,M是D1D的中點(diǎn),N是A1B1上的動(dòng)點(diǎn),則直線NO、AM的位置關(guān)系是( )
A.平行 | B.相交 |
C.異面垂直 | D.異面不垂直 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com