【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是( )
A. 在(-2,1)上f(x)是增函數(shù) B. 在(1,3)上f(x)是減函數(shù)
C. 當(dāng)x=2時,f(x)取極大值 D. 當(dāng)x=4時,f(x)取極大值
【答案】C
【解析】由條件知由于f′(x)≥0函數(shù)f(x)d單調(diào)遞增;f′(x)≤0單調(diào)f(x)單調(diào)遞減
觀察f′(x)的圖象可知,
當(dāng)x∈(-2,1)時,導(dǎo)函數(shù)的圖線負(fù)后正,故函數(shù)先遞減,后遞增,故A錯誤
當(dāng)x∈(1,3)時,導(dǎo)函數(shù)現(xiàn)正后負(fù),函數(shù)先增后減,故B錯誤
當(dāng)x∈(1,2)時函數(shù)遞增,x∈(2,3)函數(shù)單調(diào)減,故得到函數(shù)在2處是極大值;
同理,由函數(shù)的圖象可知函數(shù)在4處取得函數(shù)的極小值,故D錯誤
故答案選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.
(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;
(2)當(dāng)滿足取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,
求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、是兩條不同的直線, , , 是三個不同的平面,給出下列四個命題:
①若, ,則 ②若, , ,則
③若, ,則 ④若, ,則
其中正確命題的序號是( ).
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,直線.
(1)求圓心的軌跡方程;
(2)若,求直線被圓所截得弦長的最大值;
(3)若直線是圓心下方的切線,當(dāng)在上變化時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.
(I)求雙曲線的標(biāo)準(zhǔn)方程.
(II)若點M在雙曲線上, 是雙曲線的左、右焦點,且|MF1|+|MF2|=試判斷的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時曲線在點處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河南南陽市一中上學(xué)期第三次月考】已知點為坐標(biāo)原點, 是橢圓上的兩個動點,滿足直線與直線關(guān)于直線對稱.
(I)證明直線的斜率為定值,并求出這個定值;
(II)求的面積最大時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,.
(1)已畫出函數(shù)在軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;
⑵寫出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,而b2,b5,ba14成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com