1.某幾何體的三視圖如圖所示,則其體積為6π.      
  

分析 由已知中的三視圖,可得該幾何體是一個以俯視圖為底面的半圓錐,代入錐體體積公式,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個以俯視圖為底面的半圓錐,
其底面面積S=$\frac{1}{2}π•{3}^{2}$=$\frac{9π}{2}$,
高h=4,
故體積V=$\frac{1}{3}Sh$=6π,
故答案為:6π

點評 本題考查的知識點是圓錐的體積和表面積,簡單幾何體的三視圖,難度基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題q:?x∈R,cosx≤1,則¬q是( 。
A.?x∈R,cosx≥1B.?x∈R,cosx>1C.?x0∈R,cosx0≥1D.?x0∈R,cosx0>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若$x∈({e,{e^2}}),a=lnx,b={({\frac{1}{2}})^{lnx}},c={e^{lnx}}$,則a,b,c的大小關系為( 。
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.隨著經(jīng)濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(Ⅰ)視x分布在各區(qū)間內(nèi)的頻率為相應的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數(shù),求出該函數(shù)表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值)代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場需求量落入100,110)的頻率),求T的分布列及數(shù)學期望E(T).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖一個水平放置的三角形的斜二測直觀圖是等腰直角三角形A′B′O′,若O′B′=B′A′=1,那么原△ABO的面積是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-2ax+2(a∈R).
(1)若a=1時,求函數(shù)f(x)在x∈[-1,2]上的最大值;
(2)當x∈[-1,+∞)時,f(x)≥a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列結(jié)論正確的是( 。
A.事件A的概率P(A)必有0<P(A)<1
B.事件A的概率P(A)=0.999,則事件A是必然事件
C.用某種藥物對患有胃潰瘍的500名病人治療,結(jié)果有380人有明顯的療效,現(xiàn)有胃潰瘍的病人服用此藥,則估計其有明顯的療效的可能性為76%
D.某獎券中獎率為50%,則某人購買此券10張,一定有5張中獎

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)$f(x)={x^2}+ax+\frac{1}{x}$在$({\frac{1}{2}\;\;,\;\;1})$內(nèi)任取兩個實數(shù)p,q,且p≠q,不等式$\frac{f(p)-f(q)}{p-q}>0$恒成立,則a的取值范圍是( 。
A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=x-alnx,當x>1時,f(x)>0恒成立,則實數(shù)a的取值范圍是( 。
A.(1,+∞)B.(-∞,1)C.(e,+∞)D.(-∞,e)

查看答案和解析>>

同步練習冊答案