【題目】下列結(jié)論中不正確的個數(shù)是(

①一個人打靶時連續(xù)射擊兩次,則事件至少有一次中靶與事件至多有一次中靶是對立事件;

的充分不必要條件;

③若事件與事件滿足條件:,則事件與事件是對立事件;

④把紅、橙、黃、綠4張紙牌隨機分給甲、乙、丙、丁4人,每人分得1張,則事件甲分得紅牌與事件乙分得紅牌是互斥事件.

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)對立事件定義可判斷①;由充分必要條件的判定可判斷②;根據(jù)對立事件的概率性質(zhì)可判斷③;根據(jù)互斥事件定義可判斷④.

對于①,因為對立事件不能同時發(fā)生,但事件至少有一次中靶與事件至多有一次中靶都包含事件射中一次靶”,所以不是對立事件,所以①錯誤;

對于②當, ,所以的充分條件;當,,所以不是的必要條件,所以②正確;

對于③在同一試驗條件下, 事件與事件滿足條件則事件與事件是對立事件;當事件與事件在不同的試驗條件時,雖然滿足,也不一定是對立事件,所以③錯誤;

對于④將4張紙牌隨機分給4人,事件甲分得紅牌與事件乙分得紅牌不能同時發(fā)生,也不是兩個中必有一個發(fā)生(即還有乙、丙可能得到紅牌),因而事件甲分得紅牌與事件乙分得紅牌是互斥事件,所以④正確

綜上可知,正確的為②④

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓經(jīng)過點,且點到橢圓的兩焦點的距離之和為.

(l)求橢圓的標準方程;

(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線交于點為坐標原點,求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是棱形, 相交于點,平面平面,且是直角梯形, .

(1)求證:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,以橢圓的短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的右焦點的直線與橢圓交于A,B,過垂直的直線與橢圓交于,,與交于,求證:直線,的斜率,成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機調(diào)查了40名群眾,并將他們隨機分成,兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評分,組群眾給第二階段的創(chuàng)文工作評分,根據(jù)兩組群眾的評分繪制了如圖所示的莖葉圖.

(Ⅰ)根據(jù)莖葉圖比較群眾對兩個階段的創(chuàng)文工作滿意度評分的平均值和集中程度(不要求計算出具體值,給出結(jié)論即可);

(Ⅱ)完成下面的列聯(lián)表,并通過計算判斷是否有的把握認為民眾對兩個階段創(chuàng)文工作的滿意度存在差異?

低于70分

不低于70分

合計

第一階段

第二階段

合計

參考公式:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合 .對于,定義之間的距離為

(Ⅰ),寫出所有;

(Ⅱ)任取固定的元素,計算集合中元素個數(shù);

(Ⅲ)設(shè)中有個元素,記中所有不同元素間的距離的最小值為.證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校組織學生參加社會調(diào)查,某小組共有3名男同學,4名女同學,現(xiàn)從該小組中選出3名同學分別到甲乙丙三地進行社會調(diào)查,若選出的同學中男女均有,則不同的安排方法有( )

A. 30種B. 60種C. 180種D. 360種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率為,長半軸長為短軸長的b倍,AB分別為橢圓C的上、下頂點,點

求橢圓C的方程;

若直線MAMB與橢圓C的另一交點分別為P,Q,證明:直線PQ過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知用“斜二測”畫圖法畫一個水平放置的圓時,所得圖形是橢圓,則該橢圓的離心率為_______

查看答案和解析>>

同步練習冊答案