若函數(shù)上有最小值,則實數(shù)的取值范圍是   
解:由題意可得:函數(shù)
所以f′(x)=x2-1.
因為函數(shù) 在區(qū)間上有最小值,
所以函數(shù)f(x)在區(qū)間內先減再增,即f′(x)先小于0然后再大于0,
所以結合二次函數(shù)的性質可得:a<1<10-a2
解得:-3<a<1.
故答案為(-3,1).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)已知函數(shù),當時,有極大值
(1)求的值;(2)求函數(shù)的極小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)若函數(shù) f(x)與 g(x)的圖像在 x=x0處的切線平行,求x0的值
(2)當曲線有公共切線時,求函數(shù)上的最值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) ,
(1)當  時,求函數(shù)  的最小值;
(2)當  時,討論函數(shù)  的單調性;
(3)是否存在實數(shù),對任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知是函數(shù)的一個極值點.
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求的單調區(qū)間;
(2)當時,若方程有兩個不同的實根
(。┣髮崝(shù)的取值范圍;
(ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)的最小值;
(2)若上單調遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求函數(shù)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù),(1)求函數(shù)極值.(2)求函數(shù)上的最大值和最小值.

查看答案和解析>>

同步練習冊答案