A. | -4 | B. | -2 | C. | 2 | D. | 4 |
分析 根據(jù)向量的垂直的條件和向量的投影的定義即可求出
解答 解:由(2$\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,
則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,
即2${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow$=0,
又|$\overrightarrow{a}$|=2,
∴$\overrightarrow{a}•\overrightarrow$=8,
∴$\overrightarrow$在$\overrightarrow{a}$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$=$\frac{8}{2}$=4
故選D.
點評 本題考查向量投影的定義,涉及數(shù)量積的運算,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-∞,\frac{1}{2}})$ | B. | $({\frac{1}{2},+∞})$ | C. | $({0,\frac{1}{2}})$ | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=-$\frac{1}{x+1}$ | B. | f(x)=x2-3x | C. | f(x)=3-x | D. | f (x)=-|x| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$ | B. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$ | ||
C. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$ | D. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com