已知函數(shù)f(x)=x|x-1|-1.
(1)求滿足f(x)=x的x值;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)解不等式f(x)<0(結(jié)果用區(qū)間表示).

解:(1),…
所以,當(dāng)x≥1時(shí),由f(x)=x得x2-x-1=x,x2-2x-1=0,解得,
因?yàn)閤≥1,所以.…
當(dāng)x<1時(shí),由f(x)=x得-x2+x-1=x,x2=-1,無實(shí)數(shù)解.…
所以,滿足f(x)=x的x值為.…
(2)由
當(dāng)x≥1時(shí),f(x)的單調(diào)遞增區(qū)間為[1,+∞);…
當(dāng)x<1時(shí),f(x)的單調(diào)遞增區(qū)間為.…
所以,f(x)的單調(diào)遞增區(qū)間是和[1,+∞).…
(3)當(dāng)x≥1時(shí),由x2-x-1<0得,…
當(dāng)x<1時(shí),由-x2+x-1<0得x2-x+1>0,恒成立.…
所以,不等式f(x)<0的解集為.…
分析:(1)討論x的范圍,將絕對值去掉得到分段函數(shù),然后求解方程f(x)=x,即可求出滿足條件的x;
(2)分段研究該函數(shù)的單調(diào)性,從而求出該函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)x≥1時(shí),解不等式x2-x-1<0,當(dāng)x<1時(shí),由-x2+x-1<0得x2-x+1>0,恒成立,從而求出滿足條件的x的范圍.
點(diǎn)評:本題主要考查了含絕對值的函數(shù)的單調(diào)性以及解方程,同時(shí)考查了分段討論的思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案