我們把離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設(shè) 為“優(yōu)美橢圓”,F(xiàn)、A分別是左焦點(diǎn)和右頂點(diǎn),B是短軸的一個(gè)端點(diǎn),則 (  )
A.60° B.75°C.90°D.120°
C

試題分析:由已知=,2c2=(3-)a2,所以 ,
=,
從而+=+==
點(diǎn)評(píng):中檔題,注意到選項(xiàng)均為角度值,所以應(yīng)從研究三角形ABF的邊的關(guān)系入手。本題對(duì)計(jì)算能力要求較高。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓)的離心率為,過右焦點(diǎn)且斜率為1的直線交橢圓兩點(diǎn),為弦的中點(diǎn)。
(1)求直線為坐標(biāo)原點(diǎn))的斜率
(2)設(shè)橢圓上任意一點(diǎn),且,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,的兩個(gè)頂點(diǎn)、的坐標(biāo)分別是(-1,0),(1,0),點(diǎn)的重心,軸上一點(diǎn)滿足,且.
(1)求的頂點(diǎn)的軌跡的方程;
(2)不過點(diǎn)的直線與軌跡交于不同的兩點(diǎn),當(dāng)時(shí),求的關(guān)系,并證明直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經(jīng)過點(diǎn)A、B是函數(shù)圖像上的點(diǎn),正半軸上的點(diǎn).
(1) 求的解析式;
(2) 設(shè)為坐標(biāo)原點(diǎn),是一系列正三角形,記它們的邊長(zhǎng)是,求數(shù)列的通項(xiàng)公式;
(3) 在(2)的條件下,數(shù)列滿足,記的前項(xiàng)和為,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交A,B且?若存在,寫出該圓的方程,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我國(guó)發(fā)射的“神舟七號(hào)”飛船的運(yùn)行軌道是以地球的中心為一個(gè)焦點(diǎn)的橢圓,近地點(diǎn)A距地面為千米,遠(yuǎn)地點(diǎn)B距地面為千米,地球半徑為千米,則飛船運(yùn)行軌道的短軸長(zhǎng)為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的右焦點(diǎn)為點(diǎn)在橢圓上,以點(diǎn)為圓心的圓與軸相切,且同時(shí)與軸相切于橢圓的右焦點(diǎn),則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的實(shí)軸長(zhǎng)、虛軸長(zhǎng)與焦距的和為8,則半焦距的取值范圍是        (答案用區(qū)間表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案