中,兩個定點,的垂心H(三角形三條高線的交點)是AB邊上高線CD的中點。
(1)求動點C的軌跡方程;
(2)斜率為2的直線交動點C的軌跡于P、Q兩點,求面積的最大值(O是坐標原點)。
(1)(2)

試題分析:(1)設動點C(x,y)則D(x,0)。
因為H是CD的中點,故,
因為  所以 故
整理得動點C的軌跡方程.                             ……4分
(2)設并代入
   ,即,               ……6分

又原點O到直線l的距離為,                                      ……8分
                  ……11分
當且僅當時等號成立,故面積的最大值為。
……13分
點評:求解軌跡方程時,要注意將不符合要求的點去掉,即將定義域求出;直線與圓聯(lián)立方程組時,不要忘記驗證
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設點P(x,y)在橢圓上,求的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點的距離比它到軸的距離多一個單位.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作曲線的切線,求切線的方程,并求出與曲線軸所圍成圖形的面積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1、F2為橢圓的左、右焦點,過橢圓中心任作一直線與橢圓交于P、Q 兩點,當四邊形PF1QF2面積最大時,的值等于(    )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果方程表示焦點在軸上的橢圓,則的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與橢圓共焦點且過點(5,-2)的雙曲線標準方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓中心在原點,對稱軸為坐標軸,長軸長為,離心率為,則該橢圓的方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)

過拋物線焦點垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點F的直線交拋物線于 兩點。過、作準線的垂線,垂足分別為、.

(1)求出拋物線的通徑,證明都是定值,并求出這個定值;
(2)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要使直線與焦點在軸上的橢圓總有公共點,實數(shù)的取值范圍是(   )
A.  B.  C.D.

查看答案和解析>>

同步練習冊答案