C
分析:根據(jù)題意,數(shù)列{log
2(a
n-1)}(n∈N
*)為等差數(shù)列,設(shè)其公差為d,則log
2(a
n-1)-log
2(a
n-1-1)=d,由對數(shù)的運算性質(zhì)可得,
=2
d,又由a
1=3,a
2=5,可得
=2,則可得{a
n-1}是以a
1-1=2為首項,公比為2的等比數(shù)列,進(jìn)而可得a
n=2
n+1,結(jié)合題意有a
n-a
n-1=2
n-2
n-1=2
n-1,代入可得答案.
解答:數(shù)列{log
2(a
n-1)}(n∈N
*)為等差數(shù)列,
設(shè)其公差為d,則log
2(a
n-1)-log
2(a
n-1-1)=d,
即
=2
d,又由a
1=3,a
2=5,
則d=1,即
=2,
{a
n-1}是以a
1-1=2為首項,公比為2的等比數(shù)列,
進(jìn)而可得,a
n-1=2
n,則a
n=2
n+1,
故a
n-a
n-1=2
n-2
n-1=2
n-1,
則
(
+
+…+
)=
(
+
+…+
)=1,
故選C.
點評:本題考查等差、等比數(shù)列的性質(zhì)與極限的運算,注意與對數(shù)函數(shù)或指數(shù)函數(shù)的結(jié)合運用時,往往同時涉及等比、等差數(shù)列的性質(zhì),是一個難點.