分析:(1)根據(jù)-a
n=2S
n•S
n-1,可得-S
n+S
n-1=2S
nS
n-1(n≥2),從而可得
-=2,故可得
{}是以2為首項,2為公差的等差數(shù)列;
(2)由(1)得
Sn=,再利用當n≥2時,
an=Sn-Sn-1=-=-,當n=1時,
S1=a1=,即可得到結(jié)論;
(3)根據(jù)b
n=-2a
n(n≥2),求出b
n=,再用裂項法求和,即可證得結(jié)論.
解答:(1)證明:∵-a
n=2S
n•S
n-1,∴-S
n+S
n-1=2S
nS
n-1(n≥2),S
n≠0(n=1,2,3…)-----------(1分)
∴
-=2又
==2,
∴
{}是以2為首項,2為公差的等差數(shù)列---------------(4分)
(2)解:由(1)得
=2+(n-1)•2=2n,∴
Sn=當n≥2時,
an=Sn-Sn-1=-=-當n=1時,
S1=a1=∴
an=--------------(8分)
(3)證明:由上知,
bn=-2an=-2[-]==
----------------(10分)
∴b
2+b
3+…+b
n=
(1-)+(-)+…+(-)=
1-<1.---------------(12分)
點評:本題考查等差數(shù)列的證明,考查數(shù)列的通項的求法,考查不等式的證明,解題的關(guān)鍵是確定數(shù)列的通項,利用裂項法求和.