分析 (1)根據(jù)3x+1=3•3x,可將方程f(x)=3x轉(zhuǎn)化為一元二次方程:3•(3x)2+2•3x-1=0,再根據(jù)指數(shù)函數(shù)范圍可得3x=13,解得x=-1,
(2)先根據(jù)函數(shù)奇偶性確定a,b值:a=1,b=3,再利用單調(diào)性定義確定其單調(diào)性:在R上遞減.最后根據(jù)單調(diào)性轉(zhuǎn)化不等式f(t2-2t)<f(2t2-k)為t2-2t>2t2-k即t2+2t-k<0在t∈R時(shí)有解,根據(jù)判別式大于零可得k的取值范圍.
解答 解:(1)由題意,當(dāng)a=b=1時(shí),−3x+13x+1+1=3x,化簡得3•(3x)2+2•3x-1=0
解得3x=−1(舍)或3x=13,所以x=-1.
(2)因?yàn)閒(x)是奇函數(shù),所以f(-x)+f(x)=0,
所以−3x+a3−x+1+b+−3x+a3x+1+b=0化簡并變形得:(3a-b)(3x+3-x)+2ab-6=0
要使上式對(duì)任意的x成立,則3a-b=0且2ab-6=0解得:{a=1b=3或{a=−1b=−3,
因?yàn)閒(x)的定義域是R,所以{a=−1b=−3舍去,
所以a=1,b=3,所以f(x)=−3x+13x+1+3,
①f(x)=−3x+13x+1+3=13(−1+23x+1)
對(duì)任意x1,x2∈R,x1<x2有:f(x1)−f(x2)=13(23x1+1−23x2+1)=23(3x2−3x1(3x1+1)(3x2+1))
因?yàn)閤1<x2,所以3x2−3x1>0,所以f(x1)>f(x2),
因此f(x)在R上遞減.因?yàn)閒(t2-2t)<f(2t2-k),所以t2-2t>2t2-k,
即t2+2t-k<0在t∈R時(shí)有解
所以△=4+4t>0,解得:t>-1,
所以k的取值范圍為(-1,+∞)
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,根據(jù)函數(shù)奇偶性的定義以及函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.綜合性較強(qiáng),運(yùn)算量較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 266,14 | B. | 256,14 | C. | 256,-214 | D. | 266,-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (14,-1) | B. | (14,1) | C. | (12,-1) | D. | (12,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | c>a>b | C. | a>b>c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | 2或-1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [−12,1e] | B. | (0,2e] | C. | (−∞,0)∪[2e,+∞) | D. | (−∞,−12)∪[1e,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com