【題目】某校高三年級(jí)有男生人,學(xué)號(hào)為,,,;女生人,學(xué)號(hào)為,,,.對(duì)高三學(xué)生進(jìn)行問卷調(diào)查,按學(xué)號(hào)采用系統(tǒng)抽樣的方法,從這名學(xué)生中抽取人進(jìn)行問卷調(diào)查(第一組采用簡(jiǎn)單隨機(jī)抽樣,抽到的號(hào)碼為);再從這名學(xué)生中隨機(jī)抽取人進(jìn)行數(shù)據(jù)分析,則這人中既有男生又有女生的概率是( )
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為雙曲線:的一個(gè)焦點(diǎn),過作的一條漸近線的垂線,垂足為點(diǎn),與的另一條漸近線交于點(diǎn),若,則的離心率為( )
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的離心率為,求的值;
(2)若過點(diǎn)任作一條直線與橢圓交于不同的兩點(diǎn),在軸上是否存在點(diǎn),使得, 若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生考試中答對(duì)但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結(jié)果正確,無明顯推理錯(cuò)誤,但語言不規(guī)范、缺少必要文字說明、卷面字跡不清、得分要點(diǎn)缺失等,記此類解答為“類解答”為評(píng)估此類解答導(dǎo)致的失分情況,某市教研室做了項(xiàng)試驗(yàn):從某次考試的數(shù)學(xué)試卷中隨機(jī)抽取若干屬于“類解答”的題目,掃描后由近百名數(shù)學(xué)老師集體評(píng)閱,統(tǒng)計(jì)發(fā)現(xiàn),滿分12分的題,閱卷老師所評(píng)分?jǐn)?shù)及各分?jǐn)?shù)所占比例大約如下表:
教師評(píng)分(滿分12分) | 11 | 10 | 9 |
各分?jǐn)?shù)所占比例 |
某次數(shù)學(xué)考試試卷評(píng)閱采用“雙評(píng)+仲裁”的方式,規(guī)則如下:兩名老師獨(dú)立評(píng)分,稱為一評(píng)和二評(píng),當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值小于等于1分時(shí),取兩者平均分為該題得分;當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值大于1分時(shí),再由第三位老師評(píng)分,稱之為仲裁,取仲裁分?jǐn)?shù)和一、二評(píng)中與之接近的分?jǐn)?shù)的平均分為該題得分;當(dāng)一、二評(píng)分?jǐn)?shù)和仲裁分?jǐn)?shù)差值的絕對(duì)值相同時(shí),取仲裁分?jǐn)?shù)和前兩評(píng)中較高的分?jǐn)?shù)的平均分為該題得分.(假設(shè)本次考試閱卷老師對(duì)滿分為12分的題目中的“類解答”所評(píng)分?jǐn)?shù)及比例均如上表所示,比例視為概率,且一、二評(píng)與仲裁三位老師評(píng)分互不影響).
(1)本次數(shù)學(xué)考試中甲同學(xué)某題(滿分12分)的解答屬于“類解答”,求甲同學(xué)此題得分的分布列及數(shù)學(xué)期望;
(2)本次數(shù)學(xué)考試有6個(gè)解答題,每題滿分12分,同學(xué)乙6個(gè)題的解答均為“類解答”.
①記乙同學(xué)6個(gè)題得分為的題目個(gè)數(shù)為計(jì)算事件的概率.
②同學(xué)丙的前四題均為滿分,第5題為“類解答”,第6題得8分.以乙、丙兩位同學(xué)解答題總分均值為依據(jù),談?wù)勀銓?duì)“類解答”的認(rèn)識(shí).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構(gòu)造如圖所示,在一個(gè)十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個(gè)固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動(dòng),在直尺上的點(diǎn)M處用套管裝上鉛筆,使直尺轉(zhuǎn)動(dòng)一周,則點(diǎn)M的軌跡C是一個(gè)橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導(dǎo)槽的交點(diǎn)為原點(diǎn)O,橫槽所在直線為x軸,建立直角坐標(biāo)系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點(diǎn)M的坐標(biāo),并求出C的普通方程;
(2)已知過C的左焦點(diǎn)F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點(diǎn),過點(diǎn)F且垂直于l1的直線l2與C交于G,H兩點(diǎn).當(dāng),|GH|,依次成等差數(shù)列時(shí),求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購物商場(chǎng)分別推出支付寶和微信“掃碼支付”購物活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用“掃碼支付”.現(xiàn)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的人次;
(2)推廣期結(jié)束后,商場(chǎng)對(duì)顧客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
支付方式 | 現(xiàn)金 | 會(huì)員卡 | 掃碼 |
比例 |
商場(chǎng)規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會(huì)員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計(jì)相應(yīng)事件發(fā)生的概率,估計(jì)該顧客支付的平均費(fèi)用是多少?
參考數(shù)據(jù):設(shè),,,
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;
(3)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校同時(shí)提供、兩類線上選修課程,類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分;類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分.每周開設(shè)次,共開設(shè)周,每次均為獨(dú)立內(nèi)容,每次只能選擇類、類課程中的一類學(xué)習(xí).當(dāng)選擇類課程次,類課程次時(shí),可獲得總積分共_______分.如果規(guī)定學(xué)生觀看直播總時(shí)間不得少于分鐘,課后作業(yè)總時(shí)間不得少于分鐘,則通過線上選修課的學(xué)習(xí),最多可以獲得總積分共________分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.命題“x0∈R,x0﹣1<0”的否定是“x∈R,x2+x﹣1>0”
C.命題“若x=y,則sin x=sin y”的逆否命題為假命題
D.若“p或q”為真命題,則p,q中至少有一個(gè)為真命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com