【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)的頻率分布直方圖如圖所示.
(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);
(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機(jī)抽取5個(gè),再從這5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出以下兩種收購方案:
方案①:所有芒果以9元/千克收購;
方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購,對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購.
通過計(jì)算確定種植園選擇哪種方案獲利更多.
參考數(shù)據(jù):.
【答案】(1)255;(2);(3)選擇方案②獲利多
【解析】
1)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù).(2)利用分層抽樣從這兩個(gè)范圍內(nèi)抽取5個(gè)芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個(gè),記為a1,a2,質(zhì)量在[250,300)內(nèi)的芒果有3個(gè),記為b1,b2,b3,從抽取的5個(gè)芒果中抽取2個(gè),利用列舉法能求出這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入為8400元,不低于250克的芒果的收入為17400元,由此能求出選擇方案②獲利多.
(1)由頻率分布直方圖知,各區(qū)間頻率為0.07,0.15,0.20,0.30,0.25,0.03
這組數(shù)據(jù)的平均數(shù)
.
(2)利用分層抽樣從這兩個(gè)范圍內(nèi)抽取5個(gè)芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個(gè),記為,,質(zhì)量在[250,300)內(nèi)的芒果有3個(gè),記為,, ;
從抽取的5個(gè)芒果中抽取2個(gè)共有10種不同情況:,,,,,,,,,.
記事件為“這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間”,則有4種不同組合:
,,,
從而,故這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間的概率為.
(3)方案①收入:(元);
方案②:低于250克的芒果收入為(元);
不低于250克的芒果收入為(元);
故方案②的收入為(元).
由于,所以選擇方案②獲利多.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 的左右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線AP與BP的斜率之積為 ,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書中,用如圖所示的三角形,解釋二項(xiàng)和的乘方規(guī)律.在歐洲直到1623年以后,法國數(shù)學(xué)家布萊士帕斯卡的著作(1655年)介紹了這個(gè)三角形,近年來,國外也逐漸承認(rèn)這項(xiàng)成果屬于中國,所以有些書上稱這是“中國三角形”,如圖.17世紀(jì)德國數(shù)學(xué)家萊布尼茨發(fā)現(xiàn)了“萊布尼茨三角形”,如圖.在楊輝三角中,相鄰兩行滿足關(guān)系式:,其 中是行數(shù),.請(qǐng)類比上式,在萊布尼茨三角形中相鄰兩行滿足的關(guān)系式是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},且A∩B={2}.
(1)求a的值及集合A,B;
(2)設(shè)全集U=A∪B,求(UA)∪(UB);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)曲線與相交于兩點(diǎn),求過兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點(diǎn),已知AB=2,AD=2 ,PA=2,求:
(1)三角形PCD的面積;
(2)異面直線BC與AE所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:(為自然對(duì)數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個(gè)結(jié)論:
①平行于同一直線的兩條直線互相平行;
②垂直于同一平面的兩個(gè)平面互相平行;
③若,是兩個(gè)平面;,是異面直線;且,,,,則;
④若三棱錐中,,,則點(diǎn)在平面內(nèi)的射影是的垂心;
其中錯(cuò)誤結(jié)論的序號(hào)為__________.(要求填上所有錯(cuò)誤結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com