【題目】已知函數(shù)f(x)的圖像在點M(1f(1))處的切線方程為x2y50

(1)求函數(shù)yf(x)的解析式;

(2)求函數(shù)yf(x)的單調(diào)區(qū)間.

【答案】(1);(2)單調(diào)遞增區(qū)間是(3-2,3+2);單調(diào)遞減區(qū)間是(-∞,3-2)和(3+2,+∞).

【解析】試題分析:(1)先求出函數(shù)導(dǎo)數(shù),由切線斜率得在點x=-1的斜率,再由f(-1)=-2帶入函數(shù)即可求解析式;

(2)令導(dǎo)數(shù)大于0得增區(qū)間,令導(dǎo)數(shù)小于0得減區(qū)間.

試題解析:

(1)由函數(shù)f(x)的圖像在點M(-1,f(-1))處的切線方程為x+2y+5=0,

f′(-1)=-,且-1+2f(-1)+5=0,

f(-1)=-2,=-2,①

f′(x)=

所以=-.②

由①②得a=2,b=3.

(因為b+1≠0, 所以b=-1舍去)

所以所求函數(shù)解析式是f(x)=.

(2)由(1)可得f′(x)=.

令-2x2+12x+6=0,解得x1=3-2,x2=3+2,

則當(dāng)x<3-2x>3+2時,f′(x)<0,

當(dāng)3-2<x<3+2時,f′(x)>0,

所以f(x)=的單調(diào)遞增區(qū)間是(3-2,3+2);

單調(diào)遞減區(qū)間是(-∞,3-2)和(3+2,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{xn}滿足x1=1,x2=λ,并且 (λ為非零常數(shù),n=2,3,4,…). (Ⅰ)若x1 , x3 , x5成等比數(shù)列,求λ的值;
(Ⅱ)設(shè)0<λ<1,常數(shù)k∈N* , 證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015高考山東文數(shù)】某中學(xué)調(diào)查了某班全部名同學(xué)參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)

參加書法社團

未參加書法社團

參加演講社團

未參加演講社團

(1)從該班隨機選名同學(xué),求該同學(xué)至少參加上述一個社團的概率;

(2)在既參加書法社團又參加演講社團的名同學(xué)中,有5名男同學(xué)名女同學(xué)現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機選人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考山東文數(shù)】某兒童樂園在“六一”兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:

,則獎勵玩具一個;

,則獎勵水杯一個; 其余情況獎勵飲料一瓶.

假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準(zhǔn)備參加此項活動.

I)求小亮獲得玩具的概率;

II)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】來自某校一班和二班的共計9名學(xué)生志愿服務(wù)者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務(wù),且運送礦泉水崗位至少有一名一班志愿者的概率是

(Ⅰ)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;

(Ⅱ)設(shè)隨機變量為在維持秩序崗位服務(wù)的一班的志愿者的人數(shù),求分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體是由一個直平行六面體被平面所截后得到的,其中, ,

(Ⅰ)求證: 平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病倒數(shù)計算,下列各選項中,一定符合上述指標(biāo)的是(
①平均數(shù) ;
②標(biāo)準(zhǔn)差S≤2;
③平均數(shù) 且標(biāo)準(zhǔn)差S≤2;
④平均數(shù) 且極差小于或等于2;
⑤眾數(shù)等于1且極差小于或等于1.
A.①②
B.③④
C.③④⑤
D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入a=1,b=2,則輸出的a的值為(

A.7
B.9
C.11
D.13

查看答案和解析>>

同步練習(xí)冊答案