【題目】在直角梯形中,,,,,為線段(含端點(diǎn))上的一個(gè)動點(diǎn).設(shè),對于函數(shù),下列描述正確的是(

A.的最大值和無關(guān)B.的最小值和無關(guān)

C.的值域和無關(guān)D.在其定義域上的單調(diào)性和無關(guān)

【答案】A

【解析】

建立合適的直角坐標(biāo),根據(jù)向量的坐標(biāo)表示和平面向量數(shù)量積的坐標(biāo)表示建立的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì),分兩種情況通過判斷單調(diào)性求時(shí)函數(shù)最值即可

建立直角坐標(biāo)系如圖所示:

由題意知,,

因?yàn)?/span>,,所以,

設(shè)點(diǎn),解得,即點(diǎn),

所以,,

由平面向量數(shù)量積的坐標(biāo)表示可得,

,

,

所以此函數(shù)的對稱軸為,因?yàn)?/span>,

當(dāng)時(shí),,所以函數(shù)在區(qū)間上單調(diào)遞減,

所以當(dāng)時(shí),函數(shù)有最小值為,當(dāng)時(shí),函數(shù)有最大值為;

當(dāng)時(shí),,由二次函數(shù)的單調(diào)性知,

函數(shù)上單調(diào)遞減,上單調(diào)遞增;

所以當(dāng)時(shí),函數(shù)有最小值為,

因?yàn)?/span>,所以函數(shù)的最大值為;

綜上可知,無論為何值,函數(shù)的最大值均為.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,底面,,的中點(diǎn),是線段上的一點(diǎn),且,連接,.

(1)求證:平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·濰坊期末]某鋼鐵加工廠新生產(chǎn)一批鋼管,為了了解這批產(chǎn)品的質(zhì)量狀況,檢驗(yàn)員隨機(jī)抽取了100件鋼管作為樣本進(jìn)行檢測,將它們的內(nèi)徑尺寸作為質(zhì)量指標(biāo)值,由檢測結(jié)果得如下頻率分布表和頻率分布直方圖:

分組

頻數(shù)

頻率

25.05~25.15

2

0.02

25.15~25.25

25.25~25.35

18

25.35~25.45

25.45~25.55

25.55~25.65

10

0.1

25.65~25.75

3

0.03

合計(jì)

100

1

(1)求,;

(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:鋼管內(nèi)徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在為合格等級,鋼管尺寸在為優(yōu)秀等級,鋼管的檢測費(fèi)用為0.5元/根.

(i)若從的5件樣品中隨機(jī)抽取2根,求至少有一根鋼管為合格的概率;

(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:

①對該批剩余鋼管不再進(jìn)行檢測,所有鋼管均以45元/根售出;

②對該批剩余鋼管一一進(jìn)行檢測,不合格產(chǎn)品不銷售,合格等級的鋼管50元/根,優(yōu)等鋼管60元/根.

請你為該企業(yè)選擇最好的銷售方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】建設(shè)生態(tài)文明,是關(guān)系人民福祉,關(guān)乎民族未來的長遠(yuǎn)大計(jì).某市通宵營業(yè)的大型商場,為響應(yīng)節(jié)能減排的號召,在氣溫超過時(shí),才開放中央空調(diào)降溫,否則關(guān)閉中央空調(diào).如圖是該市夏季一天的氣溫(單位:)隨時(shí)間(,單位:小時(shí))的大致變化曲線,若該曲線近似的滿足函數(shù)關(guān)系.

(1)求函數(shù)的表達(dá)式;

(2)請根據(jù)(1)的結(jié)論,判斷該商場的中央空調(diào)應(yīng)在本天內(nèi)何時(shí)開啟?何時(shí)關(guān)閉?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:對棱相等的四面體為等腰四面體.

1)若等腰四面體的每條棱長都是,求該等腰四面體的體積;

2)求證:等腰四面體每個(gè)面的三角形均為銳角三角形:

3)設(shè)等腰四面體的三個(gè)側(cè)面與底面所成的角分別為,請判斷是否為定值?如果是定值,請求出該定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場一段時(shí)間后,經(jīng)過調(diào)研獲得了時(shí)間(天數(shù))與銷售單價(jià)(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點(diǎn)圖(如圖)

表中,.

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作價(jià)格關(guān)于時(shí)間的回歸方程類型?(不必說明理由)

(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)若該產(chǎn)品的日銷售量(件)與時(shí)間的函數(shù)關(guān)系為),求該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少元?(結(jié)果保留整數(shù))

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】湖北省2019年公布了新的高考方案,實(shí)行“3+1+2”模式.某學(xué)生按方案要求任意選擇,則該生選擇考?xì)v史和化學(xué)的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;

2)若C上的點(diǎn)P對應(yīng)的參數(shù)為,QC上的動點(diǎn),求中點(diǎn)到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)國際海洋安全規(guī)定:兩國軍艦正常狀況下(聯(lián)合軍演除外),在公海上的安全距離為20(即距離不得小于20),否則違反了國際海洋安全規(guī)定.如圖,在某公海區(qū)域有兩條相交成60°的直航線,交點(diǎn)是,現(xiàn)有兩國的軍艦甲,乙分別在,上的,處,起初,,后來軍艦甲沿的方向,乙軍艦沿的方向,同時(shí)以40的速度航行.

1)起初兩軍艦的距離為多少?

2)試判斷這兩艘軍艦是否會違反國際海洋安全規(guī)定?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案