已知集合M={x|(x+2)(x-1)<0},N={x|x+1<0},則M∩N=( )
A.(-1,1)
B.(-2,1)
C.(-2,-1)
D.(1,2)
【答案】分析:由題意M={x|(x+2)(x-1)<0},N={x|x+1<0},解出M和N,然后根據(jù)交集的定義和運算法則進(jìn)行計算.
解答:解:∵集合M={x|(x+2)(x-1)<0},
∴M={x|-2<x<1},
∵N={x|x+1<0},
∴N={x|x<-1},
∴M∩N={x|-2<x<-1}
故選C.
點評:此題主要考查一元二次不等式的解法及集合的交集及補集運算,一元二次不等式的解法及集合間的交、并、補運算布高考中的?純(nèi)容,要認(rèn)真掌握,并確保得分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集I=R已知集合M={x|(x+3)2≤0},N={x|2x2=(
12
x-6}
(1)求(CIM)∩N.
(2)記集合A=(CIM)∩N,已知B={x|a-1≤x≤5-a,a∈R},若B∪A=A.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、已知集合M={x|x2-3x+2=0},N={x∈Z|-1≤x-1≤2},Q={1,a2+1,a+1}.
(1)求M∩N;
(2)若M⊆Q,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2>1},N={x|log2|x|>0},則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|1+x>0},N={x|
1
x
<1},則M∩N
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|
x+1x+a
<2}
,且1∉M,實數(shù)a的取值范圍為
(-1,0]
(-1,0]

查看答案和解析>>

同步練習(xí)冊答案