已知數(shù)列的首項(xiàng)為,前項(xiàng)和為,且對(duì)任意的,當(dāng)≥2時(shí),總是的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),是數(shù)列的前項(xiàng)和,,求

(Ⅲ)設(shè),是數(shù)列的前項(xiàng)和,,試證明:

 

 

 

 

 

 

【答案】

 (Ⅰ)解: 當(dāng)

  

  又

…………4分

(Ⅱ)解:由(Ⅰ),知

    則     

    …………①

  …………② …………5分

 、伲冢

  

  

  

            …………8分

(Ⅲ)證明:

   ……………12分

       …………14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2時(shí),an總是3Sn-4與2-
5
2
Sn-1
的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn;
(Ⅲ)設(shè)cn=
3an
4•2n-3n-1an
,Pn是數(shù)列{cn}的前項(xiàng)和,n∈N*,試證明:Pn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列的首項(xiàng)為=3,通項(xiàng)與前n項(xiàng)和之間滿足2=?(n≥2)。

(1)求證:是等差數(shù)列,并求公差;

(2)求數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高二下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng)為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱(chēng)是數(shù)列的“保三角形函數(shù)”,.

(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;

(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;

(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù),和數(shù)列1,,,()提出一個(gè)正確的命題,并說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北大附中高三2月統(tǒng)練理科數(shù)學(xué) 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng)為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱(chēng)是數(shù)列的“保三角形函數(shù)”,.

(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;

(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;

(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù),,和數(shù)列1,,,()提出一個(gè)正確的命題,并說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省溫州市八校高一下學(xué)期期末聯(lián)考試卷數(shù)學(xué) 題型:解答題

已知數(shù)列的首項(xiàng)為=3,通項(xiàng)與前n項(xiàng)和之間滿足2=·

n≥2)。

(1)求證:是等差數(shù)列,并求公差;

 

(2)求數(shù)列的通項(xiàng)公式。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案