4、已知等差數(shù)列{an}滿足:a1=-2,a2=0.若將a1,a4,a5都加上同一個(gè)數(shù),所得的三個(gè)數(shù)依次成等比數(shù)列,則所加的這個(gè)數(shù)為
-7
分析:先根據(jù)a1=-2,a2=0求得數(shù)列{an}的公差,進(jìn)而求得數(shù)列{an}的通項(xiàng)公式,求得a4和a5,設(shè)所加之?dāng)?shù)為x,把x,a4和a5再代入2a4=a5a1即可求得x.
解答:解:由{an}為等差數(shù)列,a1=-2,a2=0,
∴d=2,an=2n-4.
∴a4=4,a5=6.
設(shè)所加之?dāng)?shù)為x.
∴(x+6)(x-2)=(4+x)2
∴x=-7.
故答案為:-7
點(diǎn)評:本題主要考查了等比中項(xiàng)和等差中項(xiàng)的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案