(12分)設(shè),.
=,求a的值;
,且=,求a的值;
=,求a的值;

①a=5②a=2③a=-3

解析解:①此時(shí)當(dāng)且僅當(dāng),有韋達(dá)定理可得同時(shí)成立,即;
②由于,故只可能3
此時(shí),也即,由①可得。
③此時(shí)只可能2,有,也即,由①可得。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)
tanA
tanB
=
2c-b
b
,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)數(shù)學(xué)公式
(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,設(shè)
tanA
tanB
=
2c-b
b
,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽三中高二(下)第一次段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)
(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省廣州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)
(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案