分析 (1)連接AC,BD,得到AD,CD,AC確定一個(gè)平面,推導(dǎo)出EF∥HG,EH∥GF,由此能證明四邊形EFGH為平行四邊形.
(2)推導(dǎo)出EF=3,F(xiàn)G=4,∠EFG=60°,由此利用余弦定理能求出線段EG的長(zhǎng)度.
解答 證明:(1)連接AC,BD
∵AD,CD,AC兩兩相交,∴AD,CD,AC確定一個(gè)平面,
又∵平面EFGH與空間四邊形ABCD的對(duì)角線AC,BD都平行,
且交空間四邊形的邊AB,BC,CD,DA分別于E,F(xiàn),G,H,
∴AC∥平面EFGH,GH?平面ADC,AC?平面ADC,
∴AC∥GH,同理,EF∥AC,
∴EF∥HG,同理,EH∥GF,
∴四邊形EFGH為平行四邊形.
解:(2)∵E是邊AB的中點(diǎn),AC=6,BD=8,異面直線AC與BD所成的角為60°,
由(1)得H、G、F分別是AD、DC、BC的中點(diǎn),
∴EF∥AC,且EF=$\frac{1}{2}AC$=3,F(xiàn)G∥BD,且FG=$\frac{1}{2}BD$=4,
∴∠EFG=60°,
∴EG=$\sqrt{E{F}^{2}+F{G}^{2}-2×EF×FG×cos60°}$=$\sqrt{9+16-2×3×4×\frac{1}{2}}$=$\sqrt{13}$,
∴線段EG的長(zhǎng)度為$\sqrt{13}$.
點(diǎn)評(píng) 本題考查四邊形為平行四邊形的證明,考查線段長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{13}$ | B. | 10 | C. | 2$\sqrt{37}$ | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | E | B. | F | C. | G | D. | H |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 108 | B. | 76 | C. | 61 | D. | 49 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com