在一個盒子中,放有大小相同的紅、白、黃三個小球,現(xiàn)從中任意摸出一球,若是紅球記1分,白球記2分,黃球記3分.現(xiàn)從這個盒子中有放回地先后摸出兩球,所得分?jǐn)?shù)分別記為、,設(shè)為坐標(biāo)原點,點的坐標(biāo)為,記
(1)求隨機變量=5的概率;
(2)求隨機變量的分布列和數(shù)學(xué)期望.

(1)
(2)隨機變量的分布列為:











 
因此,數(shù)學(xué)

解析試題分析:解(Ⅰ) 、可能的取值為、、,,
且當(dāng)時,,又有放回摸兩球的所有情況有種,
.  6分       
(Ⅱ) 的所有取值為
時,只有這一種情況.
時,有四種情況,
時,有兩種情況.
,,,  8分
則隨機變量的分布列為:











 
因此,數(shù)學(xué).   12分
考點:古典概型
點評:主要四考查了古典概型概率的運用,以及分布列的求解屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

先后隨機投擲2枚正方體骰子,其中表示第枚骰子出現(xiàn)的點數(shù),表示第枚骰子出現(xiàn)的點數(shù). 
(Ⅰ)求點在直線上的概率;  
(Ⅱ)求點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校數(shù)學(xué)系計劃在周六和周日各舉行一次主題不同的心理測試活動,分別由李老師和張老師負(fù)責(zé),已知該系共有位學(xué)生,每次活動均需該系位學(xué)生參加(都是固定的正整數(shù)).假設(shè)李老師和張老師分別將各自活動通知的信息獨立、隨機地發(fā)給該系位學(xué)生,且所發(fā)信息都能收到.記該系收到李老師或張老師所發(fā)活動通知信息的學(xué)生人數(shù)為
(Ⅰ)求該系學(xué)生甲收到李老師或張老師所發(fā)活動通知信息的概率;
(Ⅱ)求使取得最大值的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人各進行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為
求:(1)乙至少擊中目標(biāo)2次的概率;
(2)乙恰好比甲多擊中目標(biāo)2次的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某班數(shù)學(xué)興趣小組有男生3名,記為,女生2名,記為,現(xiàn)從中任選2名學(xué)生去參加校數(shù)學(xué)競賽
⑴寫出所有的基本事件
⑵求參賽學(xué)生中恰好有一名男生的概率
⑶求參賽學(xué)生中至少有一名男生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠有甲、乙兩個生產(chǎn)小組,每個小組各有四名工人,某天該廠每位工人的生產(chǎn)情況如下表.

 
 員工號
    1
    2
    3
    4
   甲組
  件數(shù)
   9
    11
    1l
    9
 
 員工號
    1
    2
    3
    4
   乙組
  件數(shù)
   9
    8
    10
    9
(1)用莖葉圖表示兩組的生產(chǎn)情況;
(2)求乙組員工生產(chǎn)件數(shù)的平均數(shù)和方差;
(3)分別從甲、乙兩組中隨機選取一名員工的生產(chǎn)件數(shù),求這兩名員工的生產(chǎn)總件數(shù)為19的概率.
(注:方差,其中為x1,x2, ,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知連續(xù)型隨機變量的概率密度函數(shù)
,
(1)    求常數(shù)的值,并畫出的概率密度曲線;

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

口袋中有5個大小相同的小球,其中1個小球標(biāo)有數(shù)字“3”,2個小球標(biāo)有數(shù)字“2”,2個小球標(biāo)有數(shù)字“1”,每次從中任取一個小球,取后不放回,連續(xù)抽取兩次。
(I)求兩次取出的小球所標(biāo)數(shù)字不同的概率;
(II)記兩次取出的小球所標(biāo)數(shù)字之和為X,求事件的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學(xué)生“藍(lán)天綠樹、愛護環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時每局勝者得1分,負(fù)者得0分,比賽進行到有一人比對方多3分或打滿7局時停止.
設(shè)某學(xué)校選手甲和選手乙比賽時,甲在每局中獲勝的概率為,且各局勝負(fù)相互獨立.已知
第三局比賽結(jié)束時比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案