【題目】已知在處的極值為0.
(1)求常數(shù)的值;
(2)求的單調(diào)區(qū)間;
(3)方程在區(qū)間上有三個不同的實根時,求實數(shù)的范圍.
【答案】(1);(2)的遞減區(qū)間為, 的遞增區(qū)間為和;(3)
【解析】試題分析:(1)求出f′(x)=3x2+6ax+b,利用函數(shù)的極值點,列出方程組求解即可.(2)求出導函數(shù)f′(x)=3x2+12x+9=3(x+3)(x+1),求出極值點,列表判斷導函數(shù)的符號,推出函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間.(3)利用函數(shù)的極值,求解c的范圍即可.
試題解析:
(1)可得,
由題時有極值0,可得: ,即
解得: (舍去)或
(2)當時,
故方程有根或
0 | 0 | ||||
極大值 | 極小值 |
由上表可知: 的遞減區(qū)間為, 的遞增區(qū)間為和
(3)因為,
由函數(shù)的連續(xù)性以及函數(shù)的單調(diào)性可得
科目:高中數(shù)學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過原點且關(guān)于軸對稱的兩條直線與分別交曲線于、和、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調(diào)查高中生的數(shù)學成績與學生自主學習時間之間的相關(guān)關(guān)系.某重點高中數(shù)學教師對高三年級的50名學生進行了跟蹤調(diào)查,其中每周自主做數(shù)學題的時間不少于15小時的有22人,余下的人中,在高三年級模擬考試中數(shù)學平均成績不足120分鐘的占,統(tǒng)計成績后,得到如下的列聯(lián)表:
分數(shù)大于等于120分鐘 | 分數(shù)不足120分 | 合計 | |
周做題時間不少于15小時 | 4 | 22 | |
周做題時間不足15小時 | |||
合計 | 50 |
(Ⅰ)請完成上面的列聯(lián)表,并判斷能否有99%以上的把握認為“高中生的數(shù)學成績與學生自主學習時間有關(guān)”;
(Ⅱ)(。┌凑辗謱映闃樱谏鲜鰳颖局,從分數(shù)大于等于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
(ii) 若將頻率視為概率,從全校大于等于120分的學生中隨機抽取人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,直線是函數(shù)圖象的一條對稱軸.
(1)求的值,并求的解析式;
(2)若關(guān)于的方程在區(qū)間上有且只有一個實數(shù)解,求實數(shù)的取值范圍;
(3)已知函數(shù)的圖象是由圖象上的所有點的橫坐標伸長到原來的2倍,然后再向左平移個單位得到,若, ,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處取得極值,求實數(shù)的值;
(2)若函數(shù))在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;
(3)若當時,方程有實數(shù)根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),設(shè)為曲線在點處的切線,其中.
(Ⅰ)求直線的方程(用表示);
(Ⅱ)求直線在軸上的截距的取值范圍;
(Ⅲ)設(shè)直線分別與曲線和射線()交于, 兩點,求的最小值及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為評估新教改對教學的影響,挑選了水平相當?shù)膬蓚平行班進行對比試驗,甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結(jié)果全部落在區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖所示,兩個班人數(shù)均為60人,成績80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認為學生成績優(yōu)良與班級有關(guān)?
(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機選3人來作書面發(fā)言,求發(fā)言人至少有2人來自甲班的概率.
(以下臨界值及公式僅供參考)
, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com