分析 (1)利用余弦定理求出BC,可得護航編隊的速度,利用正弦定理可得∠ABC=38°,即可得出結(jié)論;
(2)利用三角形的面積公式求由AB,AC,BC圍成海域的面積.
解答 解:(1)由題意,△ABC中,AB=3,AC=5,∠BAC=180°-38°-22°=120°,
∴由余弦定理可得BC=$\sqrt{9+25-2×3×5×cos120°}$=7,
∴護航編隊的速度為$\frac{7}{\frac{1}{2}}$=14海里/時.
由正弦定理可得$\frac{5}{sin∠ABC}=\frac{7}{sin120°}$,∴sin∠ABC=$\frac{5\sqrt{3}}{14}$,
∴∠ABC=38°,
∴護航編隊朝正北方向,以14海里/時的速度才能恰好用30分鐘成功攔截海盜船;
(2)由AB,AC,BC圍成海域的面積S=$\frac{1}{2}×3×5×sin120°$=$\frac{15\sqrt{3}}{4}$平方海里.
點評 本題考查三角形中余弦定理、正弦定理的應(yīng)用,考查三角形的面積公式,注意方位角的計算,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{2π}{3}$ | $\frac{8π}{3}$ | |||
Asin(ωx+φ) | 0 | 3 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
元件A | 8 | 12 | 40 | 32 | 8 |
元件B | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=2x-1(x∈R) | B. | f(m)=2m-1(m>2) | C. | f(x)=2x+1(x>2) | D. | f(x)=x-1(x<-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com