(本小題滿分12分)如圖,正三棱柱ABC—A1B1C1中,D是BC的中點(diǎn),AA1=AB=1.

(I)求證:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求點(diǎn)C到平面AB1D的距離.

(I)空間直角坐標(biāo)系D—xyz,
(II)(III)

解析試題分析:建立空間直角坐標(biāo)系D—xyz,如圖,

(1)證明:
連接A1B,設(shè)A1B∩AB1 = E,連接DE.
設(shè)A1A =" AB" = 1,


 …………………………3分

 ……………………………………4分
(2)解:, ,
設(shè)是平面AB1D的法向量,則,

同理,可求得平面AB1B的法向量是 ……………………6分
設(shè)二面角B—AB1—D的大小為θ,,
∴二面角B—AB1—D的大小為 …………………………8分
(3)解由(II)得平面AB1D的法向量為,
取其單位法向量
∴點(diǎn)C到平面AB1D的距離
考點(diǎn):線面平行的判定及二面角,點(diǎn)面距
點(diǎn)評(píng):本題第二問(wèn)還可作出平面角求解,第三問(wèn)利用等體積法亦可求解

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,底面,點(diǎn),分別在棱上,且 

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?若存在,請(qǐng)確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)如圖所示,在三棱柱中,點(diǎn)為棱的中點(diǎn).

(1)求證:.
(2)若三棱柱為直三棱柱,且各棱長(zhǎng)均為,求異面直線所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(diǎn)(端點(diǎn)除外),滿足.(
①求證:對(duì)于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長(zhǎng)線交于M;RQ,DB的延長(zhǎng)線交于N;RP,DC的延長(zhǎng)線交于K,求證:M、N、K三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分) 如圖,平面⊥平面,其中為矩形,為梯形,,,=2=2,中點(diǎn).
(Ⅰ) 證明;
(Ⅱ) 若二面角的平面角的余弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)如圖幾何體,是矩形,,
上的點(diǎn),且

(1)求證:;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點(diǎn),SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,⊥平面⊥平面,
,。
(1)求證:平面ADE⊥平面ABE;
(2)求二面角A—EB—D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案