A. | 有極大值 | B. | 有極小值 | ||
C. | 既無(wú)極大值,也無(wú)極小值 | D. | 無(wú)法判斷 |
分析 利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,即可得出結(jié)論.
解答 解,y′=3(x+1)2≥0恒成立,所以函數(shù)在R上單調(diào)遞增,
所以函數(shù)y=(x+1)3既無(wú)極大值,也無(wú)極小值.
故選:C
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}x=2+t\\ y=1-t\end{array}\right.(t$為參數(shù)) | B. | $\left\{\begin{array}{l}x=1-\sqrt{t}\\ y=1+\sqrt{t}\end{array}\right.(t$為參數(shù)) | ||
C. | $\left\{\begin{array}{l}x=3+t\\ y=-1-t\end{array}\right.(t$為參數(shù)) | D. | $\left\{\begin{array}{l}x=1-{t^2}\\ y=1+{t^2}\end{array}\right.(t$為參數(shù)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2個(gè) | B. | 4個(gè) | C. | 8個(gè) | D. | 無(wú)數(shù)個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∨q | B. | (¬p)∧(¬q) | C. | p∨(¬q) | D. | p∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | Sn=2Tn | B. | Tn=2bn+1 | C. | Tn>an | D. | Tn<bn+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
物理及格 | 物理不及格 | 合計(jì) | |
數(shù)學(xué)及格 | 28 | 8 | 36 |
數(shù)學(xué)不及格 | 16 | 20 | 36 |
合計(jì) | 44 | 28 | 72 |
P(X2≥k) | 0.150 | 0.100 | 0.050 | 0.010 |
k | 2.072 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com