隨機(jī)抽取某廠的某種產(chǎn)品100件,經(jīng)質(zhì)檢,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為

(1)求的分布列;

(2)求1件產(chǎn)品的平均利潤(rùn)(即的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為,一等品率提高為.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于5.13萬(wàn)元,則三等品率最多是多少?

 

【答案】

(1)故的分布列為:

6

2

1

-2

P

0.63

0.25

0.1

0.02

(2)

(3)三等品率最多為

【解析】本試題主要考查了分布列的求解以及期望公式的運(yùn)用。

(1)中根據(jù)等可能時(shí)間的概率公式,由于隨機(jī)變量的取值的所有可能取值有6,2,1,-2,那么利用古典概型概率公式得到其分布列即可。

(2)在第一問(wèn)的基礎(chǔ)上可知,只需要求解得到技術(shù)革新后,一件產(chǎn)品的平均利潤(rùn)即可

解:(1)的所有可能取值有6,2,1,-2;

,

的分布列為:

6

2

1

-2

P

0.63

0.25

0.1

0.02

(2)

(3)設(shè)技術(shù)革新后的三等品率為,則此時(shí)1件產(chǎn)品的平均利潤(rùn)為

依題意,,即,解得

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為ξ.
(1)求ξ的分布列;
(2)求1件產(chǎn)品的平均利潤(rùn)(即ξ的數(shù)學(xué)期望);
(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年廣東卷理)(本小題滿分13分)隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為

(1)求的分布列;

(2)求1件產(chǎn)品的平均利潤(rùn)(即的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為,一等品率提高為.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(廣東卷理17)隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為

(1)求的分布列;

(2)求1件產(chǎn)品的平均利潤(rùn)(即的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為,一等品率提高為.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

隨機(jī)抽取某廠的某種產(chǎn)品200件,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而生產(chǎn)1件次品虧損2萬(wàn)元,設(shè)一件產(chǎn)品獲得的利潤(rùn)為X(單位:萬(wàn)元).

(1)求X的分布列;

(2)求1件產(chǎn)品的平均利潤(rùn)(即X的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時(shí)要求生產(chǎn)1件產(chǎn)品獲得的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為

(1)求的分布列;

(2)求1件產(chǎn)品的平均利潤(rùn)(即的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為,一等品率提高為.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案