【題目】一半徑為2米的水輪如圖所示,水輪圓心距離水面1米;已知水輪按逆時針做勻速轉(zhuǎn)動,每3秒轉(zhuǎn)一圈,如果當(dāng)水輪上點從水中浮現(xiàn)時(圖中點)開始計算時間.
(1)試將點距離水面的高度(單位:米)表示為時間(單位:秒)的函數(shù);
(2)點第一次到達(dá)最高點大約要多長時間?
(3)求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按文獻(xiàn)記載,《百家姓》成文于北宋初年,表1記錄了《百家姓》開頭的24大姓氏:
表1:
趙 | 錢 | 孫 | 李 | 周 | 吳 | 鄭 | 王 | 馮 | 陳 | 褚 | 衛(wèi) |
蔣 | 沈 | 韓 | 楊 | 朱 | 秦 | 尤 | 許 | 何 | 呂 | 施 | 張 |
表2記錄了2018年中國人口最多的前10大姓氏:
表2:
1:李 | 2:王 | 3:張 | 4:劉 | 5:陳 |
6:楊 | 7:趙 | 8:黃 | 9:周 | 10:吳 |
從《百家姓》開頭的24大姓氏中隨機(jī)選取1個姓氏,則這個姓氏是2018年中國人口最多的前10大姓氏的概率為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用五種不同顏色給三棱臺的六個頂點染色,要求每個點染一種顏色,且每條棱的兩個端點染不同顏色.則不同的染色方法有___________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1) 如果,求函數(shù)的值域;
(2) 求函數(shù)=的最大值;
(3) 如果對不等式中的任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中常數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)若函數(shù)有兩個零點,求證: ;
(3)求證: .
選做題:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老小區(qū)建成時間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)
年份編號x | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
加裝戶數(shù)y | 34 | 95 | 124 | 181 | 216 |
(Ⅰ)若有意向加裝暖氣的戶數(shù)y與年份編號x滿足線性相關(guān)關(guān)系求y與x的線性回歸方程并預(yù)測截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;
(Ⅱ)2018年年底鄭州市民生工程決定對老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式分配名額,競拍方案如下:①截至2018年年底已登記在冊的居民擁有競拍資格;②每戶至多申請一個名額,由戶主在競拍網(wǎng)站上提出申請并給出每平方米的心理期望報價;③根據(jù)物價部門的規(guī)定,每平方米的初裝價格不得超過300元;④申請階段截止后,將所有申請居民的報價自高到低排列,排在前120位的業(yè)主以其報價成交;⑤若最后出現(xiàn)并列的報價,則認(rèn)為申請時問在前的居民得到名額,為預(yù)測本次競拍的成交最低價,物業(yè)公司隨機(jī)抽取了有競拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計了他們的擬報競價,得到如圖所示的頻率分布直方圖:
(1)求所抽取的居民中擬報競價不低于成本價180元的人數(shù);
(2)如果所有符合條件的居民均參與競拍,請你利用樣本估計總體的思想預(yù)測至少需要報價多少元才能獲得名額(結(jié)果取整數(shù))
參考公式對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠生產(chǎn)出一種新型兒童泡沫玩具飛機(jī),為更精確的確定最終售價,該廠采用了多種價格對該玩具飛機(jī)進(jìn)行了試銷,某銷售點的銷售情況如下表:
單價(元) | 8 | 9 | 10 | 11 | 12 |
銷量(架) | 40 | 36 | 30 | 24 | 20 |
從散點圖可以看出,這些點大致分布在一條直線的附近,變量,有較強(qiáng)的線性相關(guān)性.
(1)求銷量關(guān)于的回歸方程;
(2)若每架該玩具飛機(jī)的成本價為5元,利用(1)的結(jié)果,預(yù)測每架該玩具飛機(jī)的定價為多少元時,總利潤最大.(結(jié)果保留一位小數(shù))
(附:,,,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若存在,使得不等式成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com