設(shè)f(x)=x3+ax2+bx+c,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根,當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f'(x)=0有且只有一個(gè)相同的實(shí)根.
(2)f(x)=0和f'(x)=0有且只有一個(gè)相同的實(shí)根.
(3)f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根.
(4)f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中錯(cuò)誤命題的個(gè)數(shù)為( )
A.4
B.3
C.2
D.1
【答案】分析:因?yàn)楹瘮?shù)是一元三次函數(shù),所以是雙峰函數(shù),根據(jù)題目給出的函數(shù)在不同范圍內(nèi)實(shí)根的情況,畫(huà)出函數(shù)f(x)的簡(jiǎn)圖,然后借助于圖象,逐一分析四個(gè)命題即可得到正確答案.
解答:解:因?yàn)閒(x)=x3+ax2+bx+c,且f(x)-k=0在k<0或k>4時(shí)只有一個(gè)實(shí)數(shù)根,在0<k<4時(shí)有三個(gè)實(shí)數(shù)根,
所以其圖象近似如下圖,

因?yàn)閒(x)=0的根是函數(shù)f(x)的極值點(diǎn)的橫坐標(biāo),
由圖象可知,f(x)-4=0和f(x)=0有且只有一個(gè)相同的實(shí)根,所以命題(1)正確;
f(x)=0和f(x)=0有且只有一個(gè)相同的實(shí)根,所以命題(2)正確;
f(x)+3=0的實(shí)根小于f(x)-1=0的實(shí)根,所以命題(3)不正確;
f(x)+5=0的實(shí)根小于f(x)-2=0的實(shí)根,所以命題(4)正確.
故選D.
點(diǎn)評(píng):本題考查了命題的真假及應(yīng)用,考查了利用導(dǎo)函數(shù)研究函數(shù)的極值,考查了數(shù)形結(jié)合的數(shù)學(xué)思想,解答此題的關(guān)鍵是能夠根據(jù)方程f(x)-k=0的根的情況作出函數(shù)f(x)的圖象的大致形狀,此題是中擋題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=x3-a,x∈[0,+∞),設(shè)x1>0,記曲線y=f(x)在點(diǎn)M(x1,f(x1))處的切線l.
(1)求l的方程;
(2)設(shè)l與x軸的交點(diǎn)是(x2,0),證明x2a
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3+bx+c是[-1,1]上的增函數(shù),且f(-
1
2
)•f(
1
2
)<0,則方程f(x)=0在[-1,1]內(nèi)( 。
A、可能有3個(gè)實(shí)數(shù)根
B、可能有2個(gè)實(shí)數(shù)根
C、有唯一的實(shí)數(shù)根
D、沒(méi)有實(shí)數(shù)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3(x∈R),若0≤θ<
π
2
時(shí),f(m•sinθ)+f(2-m)>0恒成立,則實(shí)數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3+ax2+bx+c,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根,當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f′(x)=0有且只有一個(gè)相同的實(shí)根.
(2)f(x)=0和f′(x)=0有且只有一個(gè)相同的實(shí)根.
(3)f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根.
(4)f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中錯(cuò)誤命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3-
x22
-2x+a,
(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值的和為5,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案