已知橢圓,A是橢圓長(zhǎng)軸的一個(gè)端點(diǎn),B是橢圓短軸的一個(gè)端點(diǎn),F(xiàn)為橢圓的一個(gè)焦點(diǎn).若AB⊥BF,則該橢圓的離心率為

[  ]
A.

B.

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,長(zhǎng)、短軸都在坐標(biāo)軸上,過(guò)點(diǎn)A(3,0),則橢圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E的中心在坐標(biāo)原點(diǎn)O,經(jīng)過(guò)兩點(diǎn)A(1,
2
5
5
),B(-2,
5
5
).
圓C以點(diǎn)(2,0)為圓心,橢圓的短半袖長(zhǎng)為半徑.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P是圓C上的一個(gè)動(dòng)點(diǎn),求
CP
OP
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,它的短軸長(zhǎng)為2,右焦點(diǎn)為F,右準(zhǔn)線l與x軸相交于點(diǎn)E,
FE
=
OF
,過(guò)點(diǎn)F的直線與橢圓相交于A,B兩點(diǎn),點(diǎn)C和點(diǎn)D在l上,且AD∥BC∥x軸.
(I)求橢圓的方程及離心率;
(II)當(dāng)|BC|=
1
3
|AD|
時(shí),求直線AB的方程;
(III)求證:直線AC經(jīng)過(guò)線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,并且焦距為2,短軸與長(zhǎng)軸的比是
3
2

(1)求橢圓的方程;
(2)已知橢圓中有如下定理:過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上任意一點(diǎn)M(x0,y0)的切線唯一,且方程為
x0x
a2
+
y0y
b2
=1
,利用此定理求過(guò)橢圓的點(diǎn)(1,
3
2
)
的切線的方程;
(3)如圖,過(guò)橢圓的右準(zhǔn)線上一點(diǎn)P,向橢圓引兩條切線PA,PB,切點(diǎn)為A,B,求證:A,F(xiàn),B三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案