【題目】某農(nóng)場所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2019121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下表:

日期

121

122

123

124

125

溫差

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

(2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;并預(yù)報當(dāng)溫差為時,種子發(fā)芽數(shù).

附:回歸直線方程:,其中;

【答案】(1);(2)32.

【解析】

(1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,求出滿足條件的基本事件總數(shù),根據(jù)等可能事件的概率計算公式求解即可;(2)利用所給數(shù)據(jù),先求出x,y的平均數(shù),即求出本組數(shù)據(jù)的樣本中心,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程并進(jìn)行預(yù)報.

(1)設(shè)抽取到不相鄰的兩組數(shù)據(jù)為事件A,從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10中情況:

,其中數(shù)字為12月份的日期數(shù),

事件A包含的基本事件有6種,

(2)根據(jù)所給數(shù)據(jù)求得,

,,

所以y關(guān)于x的線性回歸方程為,

當(dāng)時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是關(guān)于的方程的兩個虛數(shù)根,若、在復(fù)平面上對應(yīng)的點構(gòu)成直角三角形,那么實數(shù)_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸xmm)之間近似滿足關(guān)系式b、c為大于0的常數(shù)).按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸xmm

38

48

58

68

78

88

質(zhì)量y (g)

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望;

Ⅱ)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

。└鶕(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程

ⅱ)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸x為何值時,收益的預(yù)報值最大?(精確到0.1)

附:對于樣本 ,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求的最小值;

(Ⅱ)若有兩個零點,求參數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率,是橢圓的左頂點,是橢圓的左焦點,,直線.

(1)求橢圓方程;

(2)直線過點與橢圓交于兩點,直線、分別與直線交于、兩點,試問:以為直徑的圓是否過定點,如果是,請求出定點坐標(biāo);如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正四面體ABCD中,MN分別為棱ABCD的中點,一個平面分別與棱BCBD,AD,AC交于E,F,G,H,且MN⊥平面EFGH.給出下列六個結(jié)論:①ACBD,②AB//平面EFGH,③平面ABC⊥平面EFGH,④四邊形EFGH的周長為定值;⑤四邊形EFGH的面積有最大值;⑥四邊形EFGH一定是矩形,其中,所有正確結(jié)論的序號是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:,且an+1n=12…)集合M={an|}中的最小元素記為m.

1)若a1=20,寫出ma10的值:

2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);

3)證明:當(dāng)且僅當(dāng)時,集合M是有限集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,平面側(cè)面,且

(Ⅰ)求證:;

(Ⅱ)若直線與平面所成角的大小為,求銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1,圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線的方程;

2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案