(選修4-1:幾何證明選講)如圖,已知在△ABC中,∠B=90°.O是AB上一點(diǎn),以O(shè)為圓心,OB為半徑的圓與AB交于點(diǎn)E,與AC切于點(diǎn)D,AD=2,AE=1,則CD的長(zhǎng)為_(kāi)_______.

3
分析:利用圓的切線(xiàn)性質(zhì)、切割線(xiàn)定理、勾股定理即可得出.
解答:由AD與圓O相切于點(diǎn)D,根據(jù)切割線(xiàn)定理可得AD2=AE•AB,又AD=2,AE=1,∴
由CD,CB都是圓O的切線(xiàn),根據(jù)切線(xiàn)長(zhǎng)定理可得,設(shè)CD=x,則CB=x.
由切線(xiàn)的性質(zhì)可得:AB⊥BC,
∴AB2+BC2=AC2,∴42+x2=(x+2)2,得x=3,即CD=3.
故答案為3.
點(diǎn)評(píng):熟練掌握?qǐng)A的切線(xiàn)性質(zhì)、切割線(xiàn)定理、勾股定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•遼寧)選修4-1:幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點(diǎn),過(guò)A作兩圓的切線(xiàn)分別交兩圓于C,D兩點(diǎn),連接DB并延長(zhǎng)交⊙O于點(diǎn)E.證明:
(Ⅰ)AC•BD=AD•AB;
(Ⅱ)AC=AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
已知AD是△ABC的外角∠EAC的平分線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=6,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
如圖,圓O為△ABC的外接圓,且AB=AC,過(guò)點(diǎn)A的直線(xiàn)交圓O于點(diǎn)D,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,DE是BD的延長(zhǎng)線(xiàn),連接CD.
(Ⅰ)求證:∠EDF=∠CDF;
(Ⅱ)求證:AB2=AF•AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
如圖設(shè)M為線(xiàn)段AB中點(diǎn),AE與BD交于點(diǎn)C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)寫(xiě)出圖中三對(duì)相似三角形,并對(duì)其中一對(duì)作出證明;
(2)連接FG,設(shè)α=45°,AB=4
2
,AF=3,求FG長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇三模)選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案