(本大題滿分13分)
若存在常數(shù)k和b (k、b∈R),使得函數(shù)和對其定義域上的任意實數(shù)x分別滿足:和,則稱直線l:為和的“隔離直線”.已知, (其中e為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
(1)解:∵,
∴當(dāng)時,
∵當(dāng)時,,此時函數(shù)遞減;
當(dāng)時,,此時函數(shù)遞增;
∴當(dāng)時,F(x)取極小值,其極小值為0.
(2)解:由(1)可知函數(shù)和的圖象在處有公共點,
因此若存在和的隔離直線,則該直線過這個公共點.
設(shè)隔離直線的斜率為k,則直線方程為,即
由,可得當(dāng)時恒成立
由得:
下面證明當(dāng)時恒成立.
令,
則,
當(dāng)時,.
∵當(dāng)時,,此時函數(shù)遞增;
當(dāng)時,,此時函數(shù)遞減;
∴當(dāng)時,取極大值,其極大值為0.
從而,即恒成立.
∴函數(shù)和存在唯一的隔離直線.
科目:高中數(shù)學(xué) 來源: 題型:
(本大題滿分13分)本題共有2個小題,第1小題滿分5分,第2小題滿分8分.
如圖所示,為了制作一個圓柱形燈籠,先要制作4個全等的矩形骨架,總計耗用9.6米鐵絲,骨架把圓柱底面8等份,再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).
(1)當(dāng)圓柱底面半徑取何值時,取得最大值?并求出該
最大值(結(jié)果精確到0.01平方米);
(2)在燈籠內(nèi),以矩形骨架的頂點為點,安裝一些霓虹燈,當(dāng)燈籠的底面半徑為0.3米時,求圖中兩根直線與所在異面直線所成角的大小(結(jié)果用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第一學(xué)期期中考試理科數(shù)學(xué) 題型:解答題
(本大題滿分13分)已知數(shù)列,設(shè),數(shù)列.
(1)求證:是等差數(shù)列;
(2)求數(shù)列的前n項和Sn;
(3)若一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第一學(xué)期期中考試理科數(shù)學(xué) 題型:解答題
(本大題滿分13分)如圖,現(xiàn)有一塊半徑為2m,圓心角為的扇形鐵皮,欲從其中裁剪出一塊內(nèi)接五邊形,使點在弧上,點分別在半徑和上,四邊形是矩形,點在弧上,點在線段上,四邊形是直角梯形.現(xiàn)有如下裁剪方案:先使矩形的面積達到最大,在此前提下,再使直角梯形的面積也達到最大.
(Ⅰ)設(shè),當(dāng)矩形的面積最大時,求的值;
(Ⅱ)求按這種裁剪方法的原材料利用率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
.(本大題滿分13分)
已知點是橢圓右焦點,點、分別是x軸、 y上的動點,且滿足,若點滿足.
(1)求點的軌跡的方程;
(2)設(shè)過點任作一直線與點的軌跡交于、兩點,直線、與直線分別交于點、(其中為坐標(biāo)原點),試判斷是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010屆湖南省高三第二次月考理科數(shù)學(xué)卷 題型:解答題
(本大題滿分13分)設(shè)函數(shù)是定義域在上的單調(diào)函數(shù),且對于任意正數(shù)有,已知.
(1)求的值;
(2)一個各項均為正數(shù)的數(shù)列滿足:,其中是數(shù)列的前n項的和,求數(shù)列的通項公式;
(3)在(2)的條件下,是否存在正數(shù),使 對一切成立?若存在,求出M的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com