8.已知f(x)是定義在R上的奇函數(shù),且對(duì)任意x∈R都有f(x+2)=f(2-x)+4f(2),且f(1)=3,則f(2015)=( 。
A.6B.3C.0D.-3

分析 先令x=0計(jì)算f(2)=0,再利用函數(shù)性質(zhì)得出f(x)的周期為4,利用函數(shù)的周期性和奇偶性即可計(jì)算f(2015).

解答 解:∵f(x+2)=f(2-x)+4f(2),
∴f(2)=f(2)+4f(2),
∴f(2)=0,
∴f(x+2)=f(2-x),
∴f(x-2+2)=f[2-(x-2)],即f(x)=f(4-x),
又f(x)是奇函數(shù),
∴f(4-x)=-f(x-4),f(x)=-f(x),
∴f(x)=f(x-4),
∴f(x)的周期為4,
∴f(2015)=f(-1)=-f(1)=-3.
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性和周期性的性質(zhì),計(jì)算f(x)的周期的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知△ABC的面積為S,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\sqrt{2}$S. 求cosA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知命題p:若 x>y,則-x<-y;
命題q:若A>B,則sinA>sinB.
在命題①p∨q ②p∧q;③p∧(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知x,y滿(mǎn)足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$且z=2x+y的最大值是最小值的4倍,則a的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=$\frac{1}{\sqrt{2x-3}}$的定義域是(  )
A.(0,$\frac{3}{2}$)B.[$\frac{3}{2}$,+∞)C.(-∞,$\frac{3}{2}$]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知P是△ABC所在平面內(nèi)一點(diǎn),D為AB的中點(diǎn),若2$\overrightarrow{PD}$+$\overrightarrow{PC}$=(λ+1)$\overrightarrow{PA}$+$\overrightarrow{PB}$,且△PBA與△PBC的面積相等,則實(shí)數(shù)λ的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=4cos(ωx-$\frac{π}{6}$)sin(π-ωx)-sin(2ωx-$\frac{π}{2}$),其中ω>0.
(1)求函數(shù)f(x)的值域
(2)若y=f(x)在區(qū)間[-$\frac{3π}{2}$,$\frac{π}{2}$]為增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\frac{{\sqrt{x-1}}}{x+1}$的定義域?yàn)閧x|x≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.移動(dòng)公司在互聯(lián)網(wǎng)上就用戶(hù)對(duì)某套餐服務(wù)的滿(mǎn)意程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為10000人,其中持各種態(tài)度的人數(shù)如表所示:
不滿(mǎn)意一般比較滿(mǎn)意很好
1210399826052187
移動(dòng)公司為了了解用戶(hù)的具體想法和意見(jiàn),打算從中抽取50人進(jìn)行更為詳細(xì)的調(diào)查,為此要進(jìn)行分層抽樣,那么分層抽樣時(shí)每類(lèi)人中各應(yīng)抽選出多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案