【題目】已知函數(shù)f(x)=x2﹣3x+alnx(a>0). (Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)f(x)圖象上任意一點(diǎn)的切線l的斜率為k,當(dāng)k的最小值為1時,求此時切線l的方程.
【答案】解:(I)f(x)的定義域?yàn)椋?,+∞), 當(dāng)a=1時,f(x)=x2﹣3x+lnx,
.
由2x2﹣3x+1=0,得 ,
由2x2﹣3x+1>0,得 ,或x>1,∴f(x)的單調(diào)遞增區(qū)間為 ,(1,+∞).
由2x2﹣3x+1<0,得 ,∴f(x)的單調(diào)遞減區(qū)間為 .
∴f(x)極大值為 ;極小值為f(1)=﹣2;
(II)由題意知 ,∴a=2.
此時 ,即 ,∴x=1,∴切點(diǎn)為(1,﹣2),
∴此時的切線l方程為:x﹣y﹣3=0
【解析】(Ⅰ)把a(bǔ)=1代入原函數(shù)解析式,求導(dǎo)后由導(dǎo)函數(shù)大于0求得原函數(shù)的增區(qū)間,由導(dǎo)函數(shù)小于0求得原函數(shù)的減區(qū)間,從而得到極值點(diǎn)并求得極值;(Ⅱ)求出原函數(shù)的導(dǎo)函數(shù),由基本不等式求得導(dǎo)函數(shù)的最小值,由導(dǎo)函數(shù)的最小值為1求得a的值,再由取最小值時的x值求出切點(diǎn)坐標(biāo),由點(diǎn)斜式得到切線l的方程.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中, : (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線.
(1)求的普通方程及的直角坐標(biāo)方程,并說明它們分別表示什么曲線;
(2)若分別為, 上的動點(diǎn),且的最小值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊(duì)員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊(duì).
(1)求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率;
(2)某場比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABCD沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE=1,是否在折疊后的線段AD上存在一點(diǎn)P,且,使CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A-CDF的體積的最大值,并求出此時二面角E-AC-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF平面ABCD,DE=DA=DB=2
(I)若G為DC的中點(diǎn),求證:EG//平面BCF;
(II)若 ,求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第四象限,且z是方程x2﹣4x+5=0的根.
(1)求復(fù)數(shù)z;
(2)復(fù)數(shù)w=a﹣ (a∈R)滿足|w﹣z|<2 ,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=+aln x(a≠0,a∈R).
(1)若a=1,求函數(shù)f(x)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間(0,e]上至少存在一點(diǎn)x0,使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若滿足f(x)+f(x﹣8)≤2,求x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com