長方體的一個頂點三條棱長分別為1,2,3,該長方體的頂點都在同一個球面上,則這個球的表面積為(s=4)                                                                                               (   )
A.B.14C.56D.96
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐P-ABC中,,,點 分別是AC、PC的中點,底面AB
(1)求證:平面
(2)當時,求直線與平面所成的角的大小;
(3)當取何值時,在平面內(nèi)的射影恰好為的重心?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖5,四棱錐中,底面為矩形,底面,分別為的中點

(1)求證:;
(2)若,求與面所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖5,是半徑為a的半圓,AC為直徑,點E為的中點,點B和點C為線段AD的三等分點.平面AEC外一點F滿足,F(xiàn)E=a .

圖5
(1)證明:EB⊥FD;
(2)已知點Q,R分別為線段FE,FB上的點,使得,求平面與平面所成二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題14分)如圖,在三棱錐SABC中,,O為BC的中點.
(I)求證:面ABC;
(II)求異面直線與AB所成角的余弦值;
(III)在線段AB上是否存在一點E,使二面角的平面角的余弦值為;若存在,求的值;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知直平行六面體ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中點,A1D⊥BE.
(I)求證:A1D⊥平面BDE;
(II)求二面角B―DE―C的大;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分別為AE、AB的中點。
(I)證明:PQ//平面ACD;
(II)求異面直線AE與BC所成角的余弦值;
(III)求平面ACD與平面ABE所成銳二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)如圖,長方體中,,點的中點。

(1)求證:直線∥平面;
(2)求證:平面平面
(3)求證:直線平面。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個正方體紙盒展開后如圖,在原正方體紙盒中有下列結(jié)論:
① ;
② 角;
③ 是異面直線;

其中正確結(jié)論的序號是___________.

查看答案和解析>>

同步練習冊答案