【題目】函數(shù)f(x)是定義在(﹣∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時(shí), .
(1)求f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性,并求f(x)的值域.
【答案】
(1)解:∵f(x)在(﹣∞,0)∪(0,+∞)上是偶函數(shù),
∴f(﹣x)=f(x)
設(shè)x<0,則﹣x>0,f(﹣x)=
∴
∴
(2)解:當(dāng)x>0時(shí), ,
令f'(x)=0x=2
∴當(dāng)x∈(0,2)時(shí),f'(x)<0,f(x)是減函數(shù),
x∈(2,+∞)時(shí),f'(0)>0,f(x)是增函數(shù),
且函數(shù)f(x)在此區(qū)間上有極小值y極小=f(2)=5
又f(x)是偶函數(shù),其圖象關(guān)于y軸對(duì)稱(chēng)
∴x<0時(shí),f(x)的增區(qū)間為(﹣2,0),減區(qū)間為(﹣∞,﹣2)
綜上所述,f(x)在區(qū)間(﹣∞,﹣2)和(0,2)上是減函數(shù)
在區(qū)間(﹣2,0)和(2,+∞)上是增函數(shù),值域?yàn)閒(x)∈[5,+∞)
【解析】①先由奇偶性尋求f(﹣x)與f(x)的關(guān)系,再設(shè)x<0,則﹣x>0,按照求函數(shù)值求解;②用導(dǎo)數(shù)判斷單調(diào)性,確定單調(diào)區(qū)間求得值域.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)奇偶性的性質(zhì)和奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相反的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市的交通狀況,現(xiàn)對(duì)其6條道路進(jìn)行評(píng)估,得分分別為:5,6,7,8,9,10.規(guī)定評(píng)估的平均得分與全市的總體交通狀況等級(jí)如下表:
評(píng)估的平均得分 | |||
全市的總體交通狀況等級(jí) | 不合格 | 合格 | 優(yōu)秀 |
(1)求本次評(píng)估的平均得分,并參照上表估計(jì)該市的總體交通狀況等級(jí);
(2)用簡(jiǎn)單隨機(jī)抽樣方法從這條道路中抽取條,它們的得分組成一個(gè)樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對(duì)值不超過(guò)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒(méi)有平局.在一局比賽中,甲勝乙的概率為 ,甲勝丙的概率為 ,乙勝丙的概率為 .比賽順序?yàn)椋菏紫扔杉缀鸵疫M(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類(lèi)推,在比賽中,有選手獲勝滿(mǎn)兩局就取得比賽的勝利,比賽結(jié)束.
(1)求只進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開(kāi)始到比賽結(jié)束所需比賽的局?jǐn)?shù)為ξ,求ξ的概率分布列和數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海南中學(xué)對(duì)高二學(xué)生進(jìn)行心理障礙測(cè)試得到如下列聯(lián)表:
焦慮 | 說(shuō)謊 | 懶惰 | 總計(jì) | |
女生 | 5 | 10 | 15 | 30 |
男生 | 20 | 10 | 50 | 80 |
總計(jì) | 25 | 20 | 65 | 110 |
試說(shuō)明在這三種心理障礙中哪一種與性別關(guān)系最大?
參考數(shù)據(jù):K2=
P(K2≥k) | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是( )
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)
C.f(2)<f(﹣1)<f(﹣ )
D.f(2)<f(﹣ )<f(﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù).
(I)若曲線(xiàn)在點(diǎn)處的切線(xiàn)平行于軸,求的值;
(II)求函數(shù)的極值;
(III)當(dāng)時(shí),若直線(xiàn)與曲線(xiàn)沒(méi)有公共點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)椋ī仭,a)∪(a,+∞),f(x)≥0的解集為M,f(x)<0的解集為N,則下列結(jié)論正確的是( )
A.M=CRN
B.CRM∩CRN=
C.M∪N=R
D.CRM∪CRN=R
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) ,區(qū)間M=[a,b](a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實(shí)數(shù)對(duì)(a,b)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無(wú)數(shù)多個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com