已知a>0,且a≠1,設(shè)p:函數(shù)y=aX在R上單調(diào)遞減,Q:函數(shù)f(x)=x2-2ax+1在(
1
2
,+∞)上為增函數(shù),“P∧Q”為假,“P∨Q”為真,求實數(shù)a的取值范圍.
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:首先根據(jù)兩個命題都真命題時,求出a的取值范圍,然后,根據(jù)由“P∧Q”為假,P∨Q為真知P和Q有且只有一個為真.進(jìn)行討論,完成求解過程.
解答: 解:根據(jù)題意,
p真:0<a<1,
Q真:0<a≤
1
2
,
由“P∧Q”為假,P∨Q為真知P和Q有且只有一個為真.
(1)當(dāng)P真Q假時,{a|0<a<1}∩{a?a>
1
2
且a≠1}={a?
1
2
<a<1}
(2)當(dāng)P假Q(mào)真時{a?a>1}∩{a|0<a≤
1
2
}=?
綜上可知:
1
2
<a<1.
∴實數(shù)a的取值范圍(
1
2
,1).
點評:本題重點考查了復(fù)合命題的真值表和判斷、命題的真假判斷等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某批發(fā)市場對某件商品(成本為5元/件)進(jìn)行了6天的試銷,得到如下數(shù)據(jù):
單價x(元)8.008.208.408.608.809.00
銷量y(件)908483807568
經(jīng)分析發(fā)現(xiàn)銷量y(件)與單價x(元)具有線性相關(guān)關(guān)系,且回歸直線方程為
?
y
=
?
b
•x+
?
a
(其中,
?
b
=-20
,
?
a
=
.
y
-
?
b
.
x
),那么今后為了獲得最大利潤,該商品的單價應(yīng)定為
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=A(sinωx+φ)(A>0,ω>0,|φ|<π)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0, 
π
2
]
時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=f(2x)的圖象關(guān)于直線x=
a
2
和x=
b
2
(b>a)對稱,則f(x)的一個周期為(  )
A、
a+b
2
B、2(b-a)
C、
b-a
2
D、4(b-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x,x≥0
ax2+bx,x<0
為奇函數(shù).
(1)求a-b的值;
(2)若函數(shù)f(x)在區(qū)間[-1,m-2]上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,Sn是其前n項和,且a3=2,S3=6,則a5=( 。
A、2或-
1
2
B、
1
2
或-2
C、±2
D、2或
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為函數(shù)f(x)=Asin(ωx+φ)+C(A>0,ω>0,0<φ<π)圖象的一部分.
(1)求函數(shù)f(x)的周期及單調(diào)區(qū)間.
(2)說明函數(shù)f(x)的圖象可以由y=sinx(x∈R)得圖象經(jīng)過怎樣的變換得到.
(3)求與函數(shù)f(x)圖象關(guān)于直線x=2對稱的函數(shù)y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin2α=
2
3
,則cos2(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,若復(fù)數(shù)Z=a+bi(a,b∈R)在復(fù)平面內(nèi)對應(yīng)的點位于第四象限,則復(fù)數(shù)Z•i在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案