四面體SABC,E,F,G分別是棱SC,AB,SB的中點,若異面直線SABC所成的角等于45º,則∠EGF等于(    )
A.90ºB.60º或120ºC.45ºD.45º或135º
D

試題分析:先通過平移將兩條異面直線平移到同一個起點AC的中點D,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.

四面體SABC,E,F,G分別是棱SC,AB,SB的中點,若異面直線SABC所成的角等于45º,則∠EGF等于45º或135º,故選D.
點評:本小題主要考查異面直線所成的角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED為正方形,且所在平面垂直于平面ABC.

(Ⅰ)證明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,設(shè)正方形的邊長為,點分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點
平面上的射影恰好在上.

(1)證明:平面
(2)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為圓的直徑,點、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,

(Ⅰ)求證:平面平面
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)當(dāng)的長為何值時,平面與平面所成的銳二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是空間三條不同的直線,是空間兩個不同的平面,則下列命題中,逆命題不正確的是(  )
A.當(dāng)時,若,則
B.當(dāng)時,若,則
C.當(dāng)內(nèi)的射影時,若,則
D.當(dāng)時,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個正方體的六個面上分別標(biāo)有A,B,C,D,E,F,下圖是正方體的兩種不同放置,則與D面相對的面上的字母是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側(cè)棱⊥平面,.

(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,底面△為正三角形的直三棱柱中,,,的中點,點在平面內(nèi),

(Ⅰ)求證:;  
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面,直線,直線,有下面四個命題:
(1)     (2)
(3)     (4)
 其中正確的是(   )
A.(1)與(2)  B.(3)與(4)  C.(1)與(3)D.(2)與(4)

查看答案和解析>>

同步練習(xí)冊答案