5.若復(fù)數(shù)z滿足z(1+2i)=2,則z的虛部為( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{4}{5}i$D.$\frac{4}{5}i$

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:∵z(1+2i)=2,∴z(1+2i)(1-2i)=2(1-2i),∴z=$\frac{2}{5}$-$\frac{4}{5}$i.
則z的虛部為$-\frac{4}{5}$.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)y=f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使函數(shù)值y<0的x取值范圍為( 。
A.(-2,2)B.(2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0上,f(x)=x2-x-1.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.滿足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.平行于圓錐底面的截面面積是底面積的一半,則此截面分圓錐的高為上、下兩段的比為1:($\sqrt{2}-1$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下調(diào)查方式中,不合適的是( 。
A.浙江衛(wèi)視“奔跑吧兄弟”綜藝節(jié)目的收視率,采用抽查的方式
B.了解某漁場(chǎng)中青魚(yú)的平均重量,采用抽查的方式
C.了解iphone6s手機(jī)的使用壽命,采用普查的方式
D.了解一批汽車(chē)的剎車(chē)性能,采用普查的方式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{(a+3)x-5\;\;(x<1)}\\{\frac{2a}{x}\;\;\;(x≥1)}\end{array}}$是R上的增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(0,2]B.[-3,0)C.[-2,0)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={x|y=$\sqrt{\frac{1}{{x}^{2}-5x+4}}$},B={-2,-1,0,1,2},則(∁RA)∩B=( 。
A.{2}B.{1,2}C.{-2,-1}D.{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)P(2,0)且斜率為k的直線l交拋物線y2=2x于M(x1,y1),N(x2,y2)兩點(diǎn).
(1)若k=1,求|MN|;
(2)求證:OM⊥ON.

查看答案和解析>>

同步練習(xí)冊(cè)答案