分析 (1)由題意可得A,B,C的坐標,寫出直線BF的方程,再由AC的中點在直線BF上求得a,由隱含條件求得b,則橢圓方程可求;
(2)由直線BF的斜率可得b,求出a,得到橢圓方程,聯(lián)立直線方程和橢圓方程求得D的坐標,則點D到橢圓E右準線的距離可求.
解答 解:(1)由題意,A(-a,0),B(0,b),C(0,-b),
又F(-1,0),∴c=1,直線BF:y=bx+b.
∵M為AC的中點,∴$M(-\frac{a}{2},-\frac{2})$,
代入直線BF:y=bx+b,得a=3,
由a2=b2+c2=b2+1,得b2=8,
∴橢圓E的標準方程是$\frac{x^2}{9}+\frac{y^2}{8}=1$;
(2)∵直線BF的斜率為1,則$b=c=1,a=\sqrt{2}$,
∴橢圓$M:\frac{x^2}{2}+{y^2}=1$,
又直線BF:y=x+1,聯(lián)立$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=x+1\end{array}\right.$,解得x=0(舍),或$x=-\frac{4}{3}$,
∵右準線的方程為x=2,
∴點D到右準線的距離為$2+\frac{4}{3}=\frac{10}{3}$.
點評 本題考查橢圓的簡單性質,考查了橢圓標準方程的求法,是基礎的計算題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | |a|<|b| | B. | $\frac{1}{a}>\frac{1}$ | C. | sina>sinb | D. | lna>lnb |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,3) | B. | (3,4) | C. | (0,4) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com