【題目】經(jīng)銷商第一年購買某工廠商品的單價(jià)為(單位:元),在下一年購買時(shí),購買單價(jià)與其上年度銷售額(單位:萬元)相聯(lián)系,銷售額越多,得到的優(yōu)惠力度越大,具體情況如下表:

上一年度

銷售額/萬元

商品單價(jià)/元

為了研究該商品購買單價(jià)的情況,為此調(diào)查并整理了個(gè)經(jīng)銷商一年的銷售額,得到下面的柱狀圖.

已知某經(jīng)銷商下一年購買該商品的單價(jià)為(單位:元),且以經(jīng)銷商在各段銷售額的頻率作為概率.

(1)求的平均估計(jì)值.

(2)為了鼓勵(lì)經(jīng)銷商提高銷售額,計(jì)劃確定一個(gè)合理的年度銷售額(單位:萬元),年銷售額超過的可以獲得紅包獎(jiǎng)勵(lì),該工廠希望使的經(jīng)銷商獲得紅包估計(jì)的值,并說明理由.

【答案】(1);(2)年銷售額標(biāo)準(zhǔn)為萬元時(shí),的經(jīng)銷商可以獲得紅包.

【解析】分析:(1)先利用頻率分布表得到每個(gè)變量對(duì)應(yīng)的概率,再利用平均值的計(jì)算公式進(jìn)行求解;(2)利用互斥事件的概率公式判定所在區(qū)間.

詳解:(1)由題可知:

商品單價(jià)/元

頻率

0.2

0.3

0.24

0.12

0.1

0.04

的平均估計(jì)值為:

.

(2)因?yàn)楹?/span>組的頻率之和為,

而后組的頻率之和為,

所以.

,解得.

所以年銷售額標(biāo)準(zhǔn)為萬元時(shí)的經(jīng)銷商可以獲得紅包.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[11]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲袋內(nèi)摸出1個(gè)紅球的概率是,從乙袋內(nèi)摸出1個(gè)紅球的概率是,從兩袋內(nèi)各摸出1個(gè)球,則等于( )

A. 2個(gè)球不都是紅球的概率B. 2個(gè)球都是紅球的概率

C. 至少有1個(gè)紅球的概率D. 2個(gè)球中恰好有1個(gè)紅球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).

(1)求證:MN∥平面PAD;

(2)在PB上確定一個(gè)點(diǎn)Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為回饋顧客,某商場(chǎng)擬通過摸球兌獎(jiǎng)的方式對(duì)位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

(1)若袋中所裝的個(gè)球中有個(gè)所標(biāo)的面值為元,其余個(gè)均為元,求顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

(2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是元,并規(guī)定袋中的個(gè)球只能由標(biāo)有面值為元和元的兩種球組成,或標(biāo)有面值元和元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡.請(qǐng)對(duì)袋中的個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,的中點(diǎn).

1)求證:平面

2)在線段上是否存在一點(diǎn),使得平面平面?若存在,證明你的結(jié)論,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面底面,.

1)求證:平面平面;

2)當(dāng)三棱錐體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有120名工人,其年齡都在20~ 60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分成四組,其頻率分布直方圖如下圖所示.工廠為了開發(fā)新產(chǎn)品,引進(jìn)了新的生產(chǎn)設(shè)備,F(xiàn)采用分層抽樣法從全廠工人中抽取一個(gè)容量為20的樣本參加新設(shè)備培訓(xùn),培訓(xùn)結(jié)束后進(jìn)行結(jié)業(yè)考試。已知各年齡段培訓(xùn)結(jié)業(yè)考試成績(jī)優(yōu)秀的人數(shù)如下表所示:

若隨機(jī)從年齡段[20,30)和[40,50)的參加培訓(xùn)工人中各抽取1人,則這兩人培訓(xùn)結(jié)業(yè)考試成績(jī)恰有一人優(yōu)秀的概率為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓的方程為,圓的方程為,若動(dòng)圓與圓內(nèi)切,與圓外切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)過直線上的點(diǎn)作圓的兩條切線,設(shè)切點(diǎn)分別是,,若直線與軌跡交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案