(1)已知x+x-1=3,求的值.

(2)計算:(lg5)2+lg2·lg50

答案:
解析:

  解:(1)由,得,

  又

  ∴由于,所以

  (2)


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
sinπx
(x2+1)(x2-2x+2)
.關于下列命題正確的個數(shù)是( 。
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)既有最大值又有最小值;
③函數(shù)f(x)的定義域是R,且其圖象有對稱軸;
④對于任意x∈(-1,0),f′(x)<0(f′(x)是函數(shù)f(x)的導函數(shù)).
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學公式,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學公式上的值域為數(shù)學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江一中高三(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當a>2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當a=4時,是否存在實數(shù)m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說明理由;
(3)設定義在D上的函數(shù)y=h(x)的圖象在點P(x,h(x))處的切線方程為l:y=g(x),當x≠x時,若在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”.當a=4,試問y=f(x)是否存在“類對稱點”?若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年遼寧省大連八中高考適應性考試數(shù)學試卷(理科)(解析版) 題型:選擇題

已知f(x)是定義在R上的奇函數(shù),且f(1)=0,f′(x)是f(x)的導函數(shù),當x>0時總有xf′(x)<f(x)成立,則不等式f(x)>0的解集為( )
A.{x|x<-1或x>1}
B.{x|x<-1或0<x<1}
C.{x|-1<x<0或0<x<1}
D.{x|-1<x<1,且x≠0}

查看答案和解析>>

同步練習冊答案