OA
,
OB
不共線,點P在O,A,B所在的平面內,且
OP
=(1-t)
OA
+t
OB
(t∈R),求證:A,B,P三點共線.
考點:平行向量與共線向量
專題:證明題,平面向量及應用
分析:
OP
=(1-t)
OA
+t
OB
可得
AP
=t
AB
;從而可得A,B,P三點共線.
解答: 證明:∵
OP
=(1-t)
OA
+t
OB
,
OP
-
OA
=t(
OB
-
OA
);
AP
=t
AB
;
故A,B,P三點共線.
點評:本題考查了平面向量的基本應用,三點共線的證明方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a6=a3+a8,S9=( 。
A、-1B、0C、2D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ=
3
5
,θ∈(
π
2
,π),tanφ=
1
2
,求tan(θ+φ),tan(θ-φ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
p
|=2
2
,|
q
|=3,
p
,
q
夾角為
π
4
,如圖,若
AB
=5
P
+2
Q
AC
=
P
-3
Q
,
AC
=
p
-3
q
,且D為BC中點,則
AD
的長度為( 。
A、
15
2
B、
15
2
C、7
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=3x3-4x2+5x+1的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用籬笆圍一個面積為100m2的矩形菜園,問這個矩形菜園長、寬各為多少時,所用籬笆最短?最短的籬笆是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,向量
BC
可以表示為①
AB
-
AC
;②
AC
-
AB
;③
BA
+
AC
;④
BA
-
CA
.( 。
A、①②③B、①③④
C、②③④D、①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中有8個白球,2個黑球,從中隨機連續(xù)摸取3次,每次取1個球,求:
(1)不放回抽樣時,摸出2個白球,1個黑球的概率.
(2)有放回時,摸出2個白球,一個黑球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校將派A,B,C三個班參加首屆中學生合唱比賽,每個參賽班級獲獎與不獲獎的機會是相等的.
(1)求這三個班級中只有一個獲獎的概率;
(2)求這三個班級不同時獲獎的概率.

查看答案和解析>>

同步練習冊答案