如圖,已知圓C1的方程為,橢圓C2的方程為(a>b>0),C2的離心率為,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.

【答案】分析:得,b2=c2,設(shè)橢圓方程為:,令A(yù)(x1,y1),B(x2,y2),由已知得圓心C1(2,1)為AB中點,A,B均在橢圓C2上,,兩式相減得:,再由根的判別式結(jié)合題設(shè)條件可求出直線AB的方程和橢圓C2的方程.
解答:,
∴a2=2c2,b2=c2,
設(shè)橢圓方程為:(2分)
令A(yù)(x1,y1),B(x2,y2),
由已知得圓心C1(2,1)為AB中點,
∴x1+x2=4,y1+y2=2,
又A,B均在橢圓C2上,

兩式相減得:

,
即直線AB的方程為y-1=-(x-2)即x+y-3=0(6分)
將y=-x+3代入得3x2-12x+18-2b2=0(9分)
由直線AB與橢圓C2相交,
∴△=122-12(18-2b2)=24b2-72>0即b2>3,
(11分)
解得b2=8,故所求的橢圓方程為(13分)
點評:本題考查直線和圓錐曲線的綜合問題,解題時要認真審題,合理解答,注意公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓C1的方程為(x-2)2+(y-1)2=
20
3
,橢圓C2的方程為
x2
a2
+
y2
b2
=1
(a>b>0),C2的離心率為
2
2
,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省衡陽八中高三(上)第五次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知圓C1的方程為,橢圓C2的方程為(a>b>0),C2的離心率為,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省德州市某中學(xué)高二(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知圓C1的方程為,橢圓C2的方程為(a>b>0),C2的離心率為,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省揚州中學(xué)高三(下)2月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知圓C1的方程為,橢圓C2的方程為(a>b>0),C2的離心率為,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.

查看答案和解析>>

同步練習(xí)冊答案