【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于和,,.是棱的中點.
(1)求證:面;
(2)求二面角的正弦值;
【答案】(1)證明見解析;(2)
【解析】
(1)取SC的中點N,連接MN,DN,根據(jù)中位線定理可知,,即可證明為平行四邊形,可得,從而由線面平行的判定定理可證明面;
(2)由題意可以點為原點建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并求得平面和平面的法向量,即可由空間向量法求得二面角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系式轉(zhuǎn)化為二面角的正弦值即可;
(1)證明:取SC的中點N,連接MN,DN,因為M,N分別為SB,SC的中點,
所以,,
又,
所以,,
故四邊形為平行四邊形,
所以,
又平面,平面,
所以平面.
(2)四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于和,以點為原點建立如圖所示的空間直角坐標(biāo)系,如下圖所示:
則,,,,
所以,,,
設(shè)平面的法向量是,則,即,
令,則,,.
設(shè)平面的法向量為,則,即,
令,則,,,
設(shè)二面角的平面角大小為,
則,即.
二面角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在底面是菱形的四棱錐中,,點E在PD上,且.
(1)證明:平面ABCD;
(2)求二面角的大小;
(3)棱PC上是否存在一點F,使平面AEC?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:相切的直線l交橢圓C于A,B兩點(O為坐標(biāo)原點),求△AOB面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-2,-1),則雙曲線的焦距為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,求函數(shù)在上的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com