若橢圓mx2+y2=1的一個焦點與拋物線y2=4x的焦點重合,則m=
 
考點:橢圓的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:先求出拋物線的焦點,從而得到橢圓的焦點,根據(jù)a2=b2+c2,從而求出m的值.
解答: 解:∵拋物線y2=4x的焦點是(1,0),
∴橢圓mx2+y2=1的焦點是右焦點是(0,1),
而mx2+y2=1變化成
x2
1
m
+
y2
1
=1,
1
m
=1+1,
∴m=
1
2
,
故答案為:
1
2
點評:本題考查了拋物線的性質,考查了橢圓的簡單性質,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若兩條直線l1:ax+2y+6=0與l2:x+(a-1)y+3=0平行,則a等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={0,1,2},且∁UA={2},則集合A等于( 。
A、{0}B、{0,1}
C、{1}D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l與頂點在原點O,焦點在y軸的正半軸上的拋物線C相交于A,B兩點,且OA⊥OB,垂足D的坐標為(1,2).
(1)求直線l的方程;
(2)求拋物線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A、B、C、D、E五位學生的數(shù)學成績x與物理成績y(單位:分)如下表:
x8075706560
y7066686462
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸方程
?
y
=
?
b
x+
?
a

(參考數(shù)值:80×70+75×66+70×68+65×64+60×62=23190,802+752+702+652+602=24750)
(2)若學生F的數(shù)學成績?yōu)?0分,試根據(jù)(1)求出的線性回歸方程,預測其物理成績(結果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某煉鋼廠成本y(元/t)與廢品率x%的線性回歸方程為
y
=160.5+20x,則當成本控制在176.5元/t時,可以預計該廠生產的1000t鋼中,約有廢品
 
t.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x(|x|-2)在區(qū)間[-2,m]上的最大值為1,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動圓C恒過定點F(-1,0),且與直線l:x=1相切
(1)求動圓圓心C的軌跡方程
(2)過點F作軌跡C的兩條互相垂直的弦AB,CD,設AB、CD的中點分別為M,N,求線段MN的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知a≠b,cos2
A
2
-cos2
B
2
=sin
A
2
cos
A
2
-sin
B
2
cos
B
2

(1)求∠C的大;
(2)若c=4,求△ABC的面積的最大值.

查看答案和解析>>

同步練習冊答案