【題目】在某中學(xué)高中某學(xué)科競賽中,該中學(xué)100名考生的參賽成績統(tǒng)計如圖所示.
(1)求這100名考生的競賽平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)記70分以上為優(yōu)秀,70分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有99%的把握認為該學(xué)科競賽成績與性別有關(guān)?
合格 | 優(yōu)秀 | 合計 | |
男生 | 18 | ||
女生 | 25 | ||
合計 | 100 |
附:.
0.050 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
【答案】(1) (2)填表見解析,不能判斷有99%的把握認為該學(xué)科競賽成績與性別有關(guān)
【解析】
(1)由每一組數(shù)據(jù)的中點值乘以該組的頻率求和得答案;(2)計算70分以上的頻率和頻數(shù),由此填寫列聯(lián)表,由表中數(shù)據(jù)計算觀測值,對照臨界值得出結(jié)論.
(1)由頻率分布直方圖,計算平均數(shù)為
;
(2)由題意,70分以上的頻率為,
頻數(shù)為,
∴70分及以下為,
由此填寫列聯(lián)表如下;
合格 | 優(yōu)秀 | 合計 | |
男生 | 18 | 30 | 48 |
女生 | 27 | 25 | 52 |
合計 | 45 | 55 | 100 |
由表中數(shù)據(jù),計算≈2.098<6.635;
不能判斷有99%的把握認為該學(xué)科競賽成績與性別有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時,AB與b成30°角;
②當(dāng)直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是(填寫所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱臺中, 側(cè)面與側(cè)面是全等的梯形,若,且.
(Ⅰ)若, ,證明: ∥平面;
(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市在對學(xué)生的綜合素質(zhì)評價中,將其測評結(jié)果分為“優(yōu)秀、合格、不合格”三個等級,其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”. 參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)某校高一年級有男生500人,女生400人,為了解性別對該綜合素質(zhì)評價結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取45名學(xué)生的綜合素質(zhì)評價結(jié)果,其各個等級的頻數(shù)統(tǒng)計如下表:
等級 | 優(yōu)秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
根據(jù)表中統(tǒng)計的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認為“綜合素質(zhì)評價測評結(jié)果為優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 男生 | 女生 | 總計 |
非優(yōu)秀 | |||
總計 |
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評價等級的頻率作為全市各個評價等級發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨立,現(xiàn)從該市高一學(xué)生中隨機抽取3人. ①求所選3人中恰有2人綜合素質(zhì)評價為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評價等級為“優(yōu)秀”的個數(shù),求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果直線y=kx+1與圓x2+y2+kx+my﹣4=0交于M、N兩點,且M、N關(guān)于直線x+y=0對稱,則不等式組:表示的平面區(qū)域的面積是(。
A.
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等比數(shù)列,前n項和為Sn(n∈N*),且 ﹣ = ,S6=63.
(1)求{an}的通項公式;
(2)若對任意的n∈N* , bn是log2an和log2an+1的等差中項,求數(shù)列{(﹣1)n bn2}的前2n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com