<strike id="kygks"><span id="kygks"></span></strike>
            1. (本小題滿分10分)如圖,四棱錐的底面是正方形,每條側(cè)棱長都是底面邊長的倍,P為側(cè)棱SD上的點。
              (1)若,求二面角的大;

              (2)在側(cè)棱SC上是否存在一點E,使得,若存在,求的值;若不存在,試說明理由。

              (1)
              (2)
              解:連BD交AC于O,由題意知

              建立如圖坐標(biāo)系,設(shè)底面邊長為a
              ,于是

              由題設(shè)可知,平面PAC的一個法向量
              平面DAC的一個法向量
              設(shè)所求二面角為
              所求二面角的大小為
              (2)在棱SC上存在一點E使
              由(1)知,
              設(shè)
              練習(xí)冊系列答案
              相關(guān)習(xí)題

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              (本小題滿分12分)
              如左圖示,在四棱錐A-BHCD中,AH⊥面BHCD,此棱錐的三視圖如下:
              (1)求二面角B-AC-D的大;
              (2)在線段AC上是否存在一點E,使ED與面BCD成45°角?若存在,確定E的位置;若不存在,說明理由。

              查看答案和解析>>

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              (本小題10分)
              如圖,在多面體中,四邊形是正方形,,,,
              ,.
              (1)求二面角的正切值;
              (2)求證:平面平面.

              查看答案和解析>>

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,點M、N分別為BC、PA的中點,且PA=AD=2,AB=1,AC=
              (Ⅰ)證明:CD⊥平面PAC;
              (Ⅱ)在線段PD上是否存在一點E,使得NM∥平面ACE;若存在,求出PE的長;若不存在,說明理由.

              查看答案和解析>>

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              (本小題滿分12分)
              如圖,四棱錐P—ABCD的底面ABCD是邊長為2的菱形,,E是CD的中點,PA底面ABCD,PA=4
              (1)證明:若F是棱PB的中點,求證:EF//平面PAD;
              (2)求平面PAD和平面PBE所成二面角(銳角)的大小。

              查看答案和解析>>

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              (8分) 如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面,且,若、分別為、的中點.
              (1)求證:∥平面
              (2)求證:平面平面.

              查看答案和解析>>

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              (本小題滿分12分)
              如圖:在四棱錐中,底面是菱形,平面,
              分別為、的中點,
              (I)證明:平面;
              (II)在線段上是否存在一點,使得平面;若存在,求出的長;若不存在,請說明理由。

              查看答案和解析>>

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              (本小題滿分12分)
              在如圖所示的空間幾何體中,△ABC,△ACD都是等邊三角形,AE=CE,DE//平面ABC,平面ACD⊥平面ABC。
              (1)求證:DE⊥平面ACD;
              (2)若AB=BE=2,求多面體ABCDE的體積。

              查看答案和解析>>

              科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

              (本小題滿分12分)
              已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點。
              (1)求四棱錐P-ABCD的體積;
              (2)若點E為PC的中點,,求證EO//平面PAD;
              (3)是否不論點E在何位置,都有BD⊥AE?證明你的結(jié)論。

              查看答案和解析>>

              同步練習(xí)冊答案